Boundedness of finite morphisms onto Fano manifolds with large Fano index
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Feng Shao | - |
dc.contributor.author | Guolei Zhong | - |
dc.date.accessioned | 2024-04-18T10:30:06Z | - |
dc.date.available | 2024-04-18T10:30:06Z | - |
dc.date.created | 2023-12-11 | - |
dc.date.issued | 2024-02 | - |
dc.identifier.issn | 0021-8693 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/15103 | - |
dc.description.abstract | Let f:Y→X be a finite morphism between Fano manifolds Y and X such that the Fano index of X is greater than 1. On the one hand, when both X and Y are fourfolds of Picard number 1, we show that the degree of f is bounded in terms of X and Y unless X≅P4; hence, such X does not admit any non-isomorphic surjective endomorphism. On the other hand, when X=Y is either a fourfold or a del Pezzo manifold, we prove that, if f is an int-amplified endomorphism, then X is toric. Moreover, we classify all the singular quadrics admitting non-isomorphic endomorphisms. © 2023 Elsevier Inc. | - |
dc.language | 영어 | - |
dc.publisher | Academic Press | - |
dc.title | Boundedness of finite morphisms onto Fano manifolds with large Fano index | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001122250500001 | - |
dc.identifier.scopusid | 2-s2.0-85177804713 | - |
dc.identifier.rimsid | 82206 | - |
dc.contributor.affiliatedAuthor | Feng Shao | - |
dc.contributor.affiliatedAuthor | Guolei Zhong | - |
dc.identifier.doi | 10.1016/j.jalgebra.2023.10.030 | - |
dc.identifier.bibliographicCitation | Journal of Algebra, v.639, pp.678 - 707 | - |
dc.relation.isPartOf | Journal of Algebra | - |
dc.citation.title | Journal of Algebra | - |
dc.citation.volume | 639 | - |
dc.citation.startPage | 678 | - |
dc.citation.endPage | 707 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordAuthor | Toric variety | - |
dc.subject.keywordAuthor | Boundedness property | - |
dc.subject.keywordAuthor | del Pezzo manifolds | - |
dc.subject.keywordAuthor | Endomorphisms | - |
dc.subject.keywordAuthor | Fano fourfolds | - |
dc.subject.keywordAuthor | Mukai manifolds | - |