BROWSE

Related Scientist

shao,feng's photo.

shao,feng
복소기하학연구단
more info

ITEM VIEW & DOWNLOAD

Boundedness of finite morphisms onto Fano manifolds with large Fano index

DC Field Value Language
dc.contributor.authorFeng Shao-
dc.contributor.authorGuolei Zhong-
dc.date.accessioned2024-04-18T10:30:06Z-
dc.date.available2024-04-18T10:30:06Z-
dc.date.created2023-12-11-
dc.date.issued2024-02-
dc.identifier.issn0021-8693-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/15103-
dc.description.abstractLet f:Y→X be a finite morphism between Fano manifolds Y and X such that the Fano index of X is greater than 1. On the one hand, when both X and Y are fourfolds of Picard number 1, we show that the degree of f is bounded in terms of X and Y unless X≅P4; hence, such X does not admit any non-isomorphic surjective endomorphism. On the other hand, when X=Y is either a fourfold or a del Pezzo manifold, we prove that, if f is an int-amplified endomorphism, then X is toric. Moreover, we classify all the singular quadrics admitting non-isomorphic endomorphisms. © 2023 Elsevier Inc.-
dc.language영어-
dc.publisherAcademic Press-
dc.titleBoundedness of finite morphisms onto Fano manifolds with large Fano index-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001122250500001-
dc.identifier.scopusid2-s2.0-85177804713-
dc.identifier.rimsid82206-
dc.contributor.affiliatedAuthorFeng Shao-
dc.contributor.affiliatedAuthorGuolei Zhong-
dc.identifier.doi10.1016/j.jalgebra.2023.10.030-
dc.identifier.bibliographicCitationJournal of Algebra, v.639, pp.678 - 707-
dc.relation.isPartOfJournal of Algebra-
dc.citation.titleJournal of Algebra-
dc.citation.volume639-
dc.citation.startPage678-
dc.citation.endPage707-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordAuthorToric variety-
dc.subject.keywordAuthorBoundedness property-
dc.subject.keywordAuthordel Pezzo manifolds-
dc.subject.keywordAuthorEndomorphisms-
dc.subject.keywordAuthorFano fourfolds-
dc.subject.keywordAuthorMukai manifolds-
Appears in Collections:
Center for Complex Geometry (복소기하학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse