BROWSE

Related Scientist

jaehyun,hong's photo.

jaehyun,hong
복소기하학연구단
more info

ITEM VIEW & DOWNLOAD

Prolongations, invariants, and fundamental identities of geometric structures

Cited 0 time in webofscience Cited 0 time in scopus
106 Viewed 0 Downloaded
Title
Prolongations, invariants, and fundamental identities of geometric structures
Author(s)
Jaehyun Hong; Morimoto, Tohru
Publication Date
2024-02
Journal
Differential Geometry and its Application, v.92
Publisher
Elsevier BV
Abstract
Working in the framework of nilpotent geometry, we give a unified scheme for the equivalence problem of geometric structures which extends and integrates the earlier works by Cartan, Singer-Sternberg, Tanaka, and Morimoto. By giving a new formulation of the higher order geometric structures and the universal frame bundles, we reconstruct the step prolongation of Singer-Sternberg and Tanaka. We then investigate the structure function γ of the complete step prolongation of a proper geometric structure by expanding it into components γ=κ+τ+σ and establish the fundamental identities for κ, τ, σ. This then enables us to study the equivalence problem of geometric structures in full generality and to extend applications largely to the geometric structures which have not necessarily Cartan connections. Among all we give an algorithm to construct a complete system of invariants for any higher order proper geometric structure of constant symbol by making use of generalized Spencer cohomology group associated to the symbol of the geometric structure. We then discuss thoroughly the equivalence problem for geometric structure in both cases of infinite and finite type. We also give a characterization of the Cartan connections by means of the structure function τ and make clear where the Cartan connections are placed in the perspective of the step prolongations. © 2024 Elsevier B.V.
URI
https://pr.ibs.re.kr/handle/8788114/15101
DOI
10.1016/j.difgeo.2023.102107
ISSN
0926-2245
Appears in Collections:
Center for Complex Geometry (복소기하학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse