ON THE ERDŐS-PÓSA PROPERTY FOR LONG HOLES IN C4-FREE GRAPHS
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huynh, Tony | - |
dc.contributor.author | O-Joung Kwon | - |
dc.date.accessioned | 2024-04-17T07:50:02Z | - |
dc.date.available | 2024-04-17T07:50:02Z | - |
dc.date.created | 2024-02-19 | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 0895-4801 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/15081 | - |
dc.description.abstract | We prove that there exists a function f(k) = Ϭ(k2 log k) such that for every C4-free graph G and every k Є \BbbN, G contains either k vertex-disjoint holes of length at least 6 or a set X of at most f(k) vertices such that G - X has no hole of length at least 6. This answers a question of Kim and Kwon [J. Combin. Theory Ser. B, 145 (2020), pp. 65-112]. © 2024 Society for Industrial and Applied Mathematics Publications. All rights reserved. | - |
dc.language | 영어 | - |
dc.publisher | Society for Industrial and Applied Mathematics | - |
dc.title | ON THE ERDŐS-PÓSA PROPERTY FOR LONG HOLES IN C4-FREE GRAPHS | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001171543400008 | - |
dc.identifier.scopusid | 2-s2.0-85184853648 | - |
dc.identifier.rimsid | 82538 | - |
dc.contributor.affiliatedAuthor | O-Joung Kwon | - |
dc.identifier.doi | 10.1137/21M1435239 | - |
dc.identifier.bibliographicCitation | SIAM Journal on Discrete Mathematics, v.38, no.1, pp.19 - 42 | - |
dc.relation.isPartOf | SIAM Journal on Discrete Mathematics | - |
dc.citation.title | SIAM Journal on Discrete Mathematics | - |
dc.citation.volume | 38 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 19 | - |
dc.citation.endPage | 42 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |