BROWSE

ITEM VIEW & DOWNLOAD

A linear convex splitting scheme for the Cahn-Hilliard equation with a high-order polynomial free energy

DC Field Value Language
dc.contributor.authorSeunggyu Lee-
dc.contributor.authorYoon, Sungha-
dc.contributor.authorKim, Junseok-
dc.date.accessioned2023-08-21T22:00:32Z-
dc.date.available2023-08-21T22:00:32Z-
dc.date.created2023-05-30-
dc.date.issued2023-09-
dc.identifier.issn0029-5981-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/13794-
dc.description.abstractIn this article, we present an unconditionally energy stable linear scheme for the Cahn-Hilliard equation with a high-order polynomial free energy. The classical Cahn-Hilliard equation does not satisfy the maximum principle; hence the order parameter can be shifted out of the minimum values of the double-well potential. We adopt a high-order polynomial potential to diminish this effect and employ the efficient linear convex splitting scheme. Since the stabilizing factor gradually increases as the degree of potential becomes greater, we modify a non-physical part of potential as a fourth-order polynomial to reduce the stabilizing factor. Numerical results as well as theoretical results demonstrate the accuracy and energy stability of our method. Furthermore, we verify that some limitations arising from applications of the classical Cahn-Hilliard model can be resolved by adopting a high-order free energy.-
dc.language영어-
dc.publisherJohn Wiley & Sons Inc.-
dc.titleA linear convex splitting scheme for the Cahn-Hilliard equation with a high-order polynomial free energy-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000986663800001-
dc.identifier.scopusid2-s2.0-85159116030-
dc.identifier.rimsid80853-
dc.contributor.affiliatedAuthorSeunggyu Lee-
dc.identifier.doi10.1002/nme.7288-
dc.identifier.bibliographicCitationInternational Journal for Numerical Methods in Engineering, v.124, no.17, pp.3586 - 3602-
dc.relation.isPartOfInternational Journal for Numerical Methods in Engineering-
dc.citation.titleInternational Journal for Numerical Methods in Engineering-
dc.citation.volume124-
dc.citation.number17-
dc.citation.startPage3586-
dc.citation.endPage3602-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusMODELS-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordAuthorCahn-Hilliard equation-
dc.subject.keywordAuthorhigh-order polynomial potential-
dc.subject.keywordAuthorlinear convex splitting method-
dc.subject.keywordAuthorunconditionally energy stable-
Appears in Collections:
Pioneer Research Center for Mathematical and Computational Sciences(수리 및 계산과학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse