Optogenetic dissection of RET signaling reveals robust activation of ERK and enhanced filopodia-like protrusions of regenerating axons
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hyeon, Bobae | - |
dc.contributor.author | Lee, Heeyoung | - |
dc.contributor.author | Nury Kim | - |
dc.contributor.author | Heo, Won Do | - |
dc.date.accessioned | 2023-07-24T22:00:57Z | - |
dc.date.available | 2023-07-24T22:00:57Z | - |
dc.date.created | 2023-07-17 | - |
dc.date.issued | 2023-07 | - |
dc.identifier.issn | 1756-6606 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/13618 | - |
dc.description.abstract | RET (REarranged during Transfection) is a receptor tyrosine kinase that transduces various external stimuli into biological functions, such as survival and differentiation, in neurons. In the current study, we developed an optogenetic tool for modulating RET signaling, termed optoRET, combining the cytosolic region of human RET with a blue-light-inducible homo-oligomerizing protein. By varying the duration of photoactivation, we were able to dynamically modulate RET signaling. Activation of optoRET recruited Grb2 (growth factor receptor-bound protein 2) and stimulated AKT and ERK (extracellular signal-regulated kinase) in cultured neurons, evoking robust and efficient ERK activation. By locally activating the distal part of the neuron, we were able to retrogradely transduce the AKT and ERK signal to the soma and trigger formation of filopodia-like F-actin structures at stimulated regions through Cdc42 (cell division control 42) activation. Importantly, we successfully modulated RET signaling in dopaminergic neurons of the substantia nigra in the mouse brain. Collectively, optoRET has the potential to be developed as a future therapeutic intervention, modulating RET downstream signaling with light. | - |
dc.language | 영어 | - |
dc.publisher | BMC | - |
dc.title | Optogenetic dissection of RET signaling reveals robust activation of ERK and enhanced filopodia-like protrusions of regenerating axons | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001020004800001 | - |
dc.identifier.scopusid | 2-s2.0-85163969615 | - |
dc.identifier.rimsid | 81186 | - |
dc.contributor.affiliatedAuthor | Nury Kim | - |
dc.identifier.doi | 10.1186/s13041-023-01046-6 | - |
dc.identifier.bibliographicCitation | MOLECULAR BRAIN, v.16, no.1 | - |
dc.relation.isPartOf | MOLECULAR BRAIN | - |
dc.citation.title | MOLECULAR BRAIN | - |
dc.citation.volume | 16 | - |
dc.citation.number | 1 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Neurosciences & Neurology | - |
dc.relation.journalWebOfScienceCategory | Neurosciences | - |
dc.subject.keywordPlus | RECEPTOR TYROSINE KINASE | - |
dc.subject.keywordPlus | NEUROTROPHIC FACTOR GDNF | - |
dc.subject.keywordPlus | NEURITE OUTGROWTH | - |
dc.subject.keywordPlus | C-SRC | - |
dc.subject.keywordPlus | FAMILY | - |
dc.subject.keywordPlus | IDENTIFICATION | - |
dc.subject.keywordPlus | MECHANISMS | - |
dc.subject.keywordPlus | EXPRESSION | - |
dc.subject.keywordPlus | SURVIVAL | - |
dc.subject.keywordPlus | DOMAINS | - |
dc.subject.keywordAuthor | Optogenetics | - |
dc.subject.keywordAuthor | RET | - |
dc.subject.keywordAuthor | GDNF | - |
dc.subject.keywordAuthor | PHR | - |
dc.subject.keywordAuthor | Neuron | - |
dc.subject.keywordAuthor | Signaling | - |
dc.subject.keywordAuthor | Actin | - |
dc.subject.keywordAuthor | AKT | - |
dc.subject.keywordAuthor | MAPK | - |
dc.subject.keywordAuthor | ERK | - |
dc.subject.keywordAuthor | TrkB | - |
dc.subject.keywordAuthor | Filopodia | - |
dc.subject.keywordAuthor | Cdc42 | - |
dc.subject.keywordAuthor | Regeneration | - |
dc.subject.keywordAuthor | Dopaminergic neuron | - |