Partial Compactification of Metabelian Lie Groups with Prescribed Varieties of Minimal Rational Tangents
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jun-Muk Hwang | - |
dc.date.accessioned | 2023-05-18T22:01:05Z | - |
dc.date.available | 2023-05-18T22:01:05Z | - |
dc.date.created | 2022-12-15 | - |
dc.date.issued | 2023-05 | - |
dc.identifier.issn | 1073-7928 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/13362 | - |
dc.description.abstract | We study minimal rational curves on a complex manifold that are tangent to a distribution. In this setting, the variety of minimal rational tangents (VMRTs) has to be isotropic with respect to the Levi tensor of the distribution. Our main result is a converse of this: any smooth projective variety isotropic with respect to a vector-valued anti-symmetric form can be realized as VMRT of minimal rational curves tangent to a distribution on a complex manifold. The complex manifold is constructed as a partial equivariant compactification of a metabelian group, which is a result of independent interest. | - |
dc.language | 영어 | - |
dc.publisher | Oxford University Press | - |
dc.title | Partial Compactification of Metabelian Lie Groups with Prescribed Varieties of Minimal Rational Tangents | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000891541000001 | - |
dc.identifier.scopusid | 2-s2.0-85160935538 | - |
dc.identifier.rimsid | 79481 | - |
dc.contributor.affiliatedAuthor | Jun-Muk Hwang | - |
dc.identifier.doi | 10.1093/imrn/rnac098 | - |
dc.identifier.bibliographicCitation | International Mathematics Research Notices, v.2023, no.10, pp.8596 - 8619 | - |
dc.relation.isPartOf | International Mathematics Research Notices | - |
dc.citation.title | International Mathematics Research Notices | - |
dc.citation.volume | 2023 | - |
dc.citation.number | 10 | - |
dc.citation.startPage | 8596 | - |
dc.citation.endPage | 8619 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | RIGIDITY | - |