BROWSE

ITEM VIEW & DOWNLOAD

Effective time step analysis for the Allen–Cahn equation with a high-order polynomial free energy

DC Field Value Language
dc.contributor.authorSeunggyu Lee-
dc.contributor.authorYoon, Sungha-
dc.contributor.authorLee, Chaeyoung-
dc.contributor.authorKim, Sangkwon-
dc.contributor.authorKim, Hyundong-
dc.contributor.authorYang, Junxiang-
dc.contributor.authorKwak, Soobin-
dc.contributor.authorHwang, Youngjin-
dc.contributor.authorKim, Junseok-
dc.date.accessioned2023-01-27T00:39:35Z-
dc.date.available2023-01-27T00:39:35Z-
dc.date.created2022-06-27-
dc.date.issued2022-10-
dc.identifier.issn0029-5981-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/12835-
dc.description.abstract© 2022 John Wiley & Sons Ltd.An effective time step analysis to the linear convex splitting scheme for the Allen–Cahn equation with a high-order polynomial free energy is presented in this article. Although the convex splitting scheme is unconditionally stable, using a large time step causes a time step rescaling effect, leading to delayed dynamics of the governing equation. We verify this problem by comparing it with a reformulated semi-implicit scheme using the effective time step. Theoretical results show that the discrete energy stability and maximum-principle hold, and the numerical results demonstrate that the time step rescaling issue can be resolved using the effective time step. We confirm that slow dynamics due to high-order potential is alleviated by the time step modification through the results of motion by mean curvature.-
dc.language영어-
dc.publisherJohn Wiley and Sons Ltd-
dc.titleEffective time step analysis for the Allen–Cahn equation with a high-order polynomial free energy-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000812461700001-
dc.identifier.scopusid2-s2.0-85132027857-
dc.identifier.rimsid78409-
dc.contributor.affiliatedAuthorSeunggyu Lee-
dc.identifier.doi10.1002/nme.7053-
dc.identifier.bibliographicCitationInternational Journal for Numerical Methods in Engineering, v.123, no.19, pp.4726 - 4743-
dc.relation.isPartOfInternational Journal for Numerical Methods in Engineering-
dc.citation.titleInternational Journal for Numerical Methods in Engineering-
dc.citation.volume123-
dc.citation.number19-
dc.citation.startPage4726-
dc.citation.endPage4743-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.subject.keywordPlusNUMERICAL-ANALYSIS-
dc.subject.keywordPlusMOTION-
dc.subject.keywordPlusAPPROXIMATION-
dc.subject.keywordPlusCONVERGENCE-
dc.subject.keywordPlusACCURACY-
dc.subject.keywordPlusSCHEMES-
dc.subject.keywordPlusFLOW-
dc.subject.keywordPlusPHASE FIELD MODEL-
dc.subject.keywordPlusMEAN-CURVATURE-
dc.subject.keywordAuthorAllen–Cahn equation-
dc.subject.keywordAuthoreffective time step-
dc.subject.keywordAuthorhigh-order polynomial free energy-
dc.subject.keywordAuthorlinear convex splitting-
Appears in Collections:
Pioneer Research Center for Mathematical and Computational Sciences(수리 및 계산과학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse