Effective time step analysis for the Allen–Cahn equation with a high-order polynomial free energy
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seunggyu Lee | - |
dc.contributor.author | Yoon, Sungha | - |
dc.contributor.author | Lee, Chaeyoung | - |
dc.contributor.author | Kim, Sangkwon | - |
dc.contributor.author | Kim, Hyundong | - |
dc.contributor.author | Yang, Junxiang | - |
dc.contributor.author | Kwak, Soobin | - |
dc.contributor.author | Hwang, Youngjin | - |
dc.contributor.author | Kim, Junseok | - |
dc.date.accessioned | 2023-01-27T00:39:35Z | - |
dc.date.available | 2023-01-27T00:39:35Z | - |
dc.date.created | 2022-06-27 | - |
dc.date.issued | 2022-10 | - |
dc.identifier.issn | 0029-5981 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12835 | - |
dc.description.abstract | © 2022 John Wiley & Sons Ltd.An effective time step analysis to the linear convex splitting scheme for the Allen–Cahn equation with a high-order polynomial free energy is presented in this article. Although the convex splitting scheme is unconditionally stable, using a large time step causes a time step rescaling effect, leading to delayed dynamics of the governing equation. We verify this problem by comparing it with a reformulated semi-implicit scheme using the effective time step. Theoretical results show that the discrete energy stability and maximum-principle hold, and the numerical results demonstrate that the time step rescaling issue can be resolved using the effective time step. We confirm that slow dynamics due to high-order potential is alleviated by the time step modification through the results of motion by mean curvature. | - |
dc.language | 영어 | - |
dc.publisher | John Wiley and Sons Ltd | - |
dc.title | Effective time step analysis for the Allen–Cahn equation with a high-order polynomial free energy | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000812461700001 | - |
dc.identifier.scopusid | 2-s2.0-85132027857 | - |
dc.identifier.rimsid | 78409 | - |
dc.contributor.affiliatedAuthor | Seunggyu Lee | - |
dc.identifier.doi | 10.1002/nme.7053 | - |
dc.identifier.bibliographicCitation | International Journal for Numerical Methods in Engineering, v.123, no.19, pp.4726 - 4743 | - |
dc.relation.isPartOf | International Journal for Numerical Methods in Engineering | - |
dc.citation.title | International Journal for Numerical Methods in Engineering | - |
dc.citation.volume | 123 | - |
dc.citation.number | 19 | - |
dc.citation.startPage | 4726 | - |
dc.citation.endPage | 4743 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Engineering, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Mathematics, Interdisciplinary Applications | - |
dc.subject.keywordPlus | NUMERICAL-ANALYSIS | - |
dc.subject.keywordPlus | MOTION | - |
dc.subject.keywordPlus | APPROXIMATION | - |
dc.subject.keywordPlus | CONVERGENCE | - |
dc.subject.keywordPlus | ACCURACY | - |
dc.subject.keywordPlus | SCHEMES | - |
dc.subject.keywordPlus | FLOW | - |
dc.subject.keywordPlus | PHASE FIELD MODEL | - |
dc.subject.keywordPlus | MEAN-CURVATURE | - |
dc.subject.keywordAuthor | Allen–Cahn equation | - |
dc.subject.keywordAuthor | effective time step | - |
dc.subject.keywordAuthor | high-order polynomial free energy | - |
dc.subject.keywordAuthor | linear convex splitting | - |