BROWSE

ITEM VIEW & DOWNLOAD

Systematic inference identifies a major source of heterogeneity in cell signaling dynamics: The rate-limiting step number

DC Field Value Language
dc.contributor.authorDae Wook Kim-
dc.contributor.authorJae Kyoung Kim-
dc.contributor.authorHyukpyo Hong-
dc.date.accessioned2022-10-14T22:11:33Z-
dc.date.available2022-10-14T22:11:33Z-
dc.date.created2022-03-29-
dc.date.issued2022-03-
dc.identifier.issn2375-2548-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/12391-
dc.description.abstractIdentifying the sources of cell-to-cell variability in signaling dynamics is essential to understand drug response variability and develop effective therapeutics. However, it is challenging because not all signaling intermediate reactions can be experimentally measured simultaneously. This can be overcome by replacing them with a single random time delay, but the resulting process is non-Markovian, making it difficult to infer cell-to-cell heterogeneity in reaction rates and time delays. To address this, we developed an efficient and scalable moment-based Bayesian inference method (MBI) with a user-friendly computational package that infers cell-to-cell heterogeneity in the non-Markovian signaling process. We applied MBI to single-cell expression profiles from promoters responding to antibiotics and discovered a major source of cell-to-cell variability in antibiotic stress response: the number of rate-limiting steps in signaling cascades. This knowledge can help identify effective therapies that destroy all pathogenic or cancer cells, and the approach can be applied to precision medicine.-
dc.publisherAmerican Association for the Advancement of Science-
dc.titleSystematic inference identifies a major source of heterogeneity in cell signaling dynamics: The rate-limiting step number-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000800334800009-
dc.identifier.scopusid2-s2.0-85126666977-
dc.identifier.rimsid77955-
dc.contributor.affiliatedAuthorDae Wook Kim-
dc.contributor.affiliatedAuthorJae Kyoung Kim-
dc.contributor.affiliatedAuthorHyukpyo Hong-
dc.identifier.doi10.1126/sciadv.abl4598-
dc.identifier.bibliographicCitationScience Advances, v.8, no.11-
dc.relation.isPartOfScience Advances-
dc.citation.titleScience Advances-
dc.citation.volume8-
dc.citation.number11-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusSTOCHASTIC GENE-EXPRESSION-
dc.subject.keywordPlusANALYTICAL DISTRIBUTIONS-
dc.subject.keywordPlusVARIABILITY-
dc.subject.keywordPlusPROTEINS-
dc.subject.keywordPlusCYCLES-
dc.subject.keywordPlusNOISE-
dc.subject.keywordPlusTIME-
Appears in Collections:
Pioneer Research Center for Mathematical and Computational Sciences(수리 및 계산과학 연구단) > 1. Journal Papers (저널논문)
Pioneer Research Center for Mathematical and Computational Sciences(수리 및 계산과학 연구단) > Biomedical Mathematics Group(의생명 수학 그룹) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse