BROWSE

Related Scientist

jaehyun,hong's photo.

jaehyun,hong
복소기하학연구단
more info

ITEM VIEW & DOWNLOAD

Positivity of chromatic symmetric functions associated with Hessenberg functions of bounce number 3

DC Field Value Language
dc.contributor.authorCho, Soojin-
dc.contributor.authorJaehyun Hong-
dc.date.accessioned2022-09-06T22:03:31Z-
dc.date.available2022-09-06T22:03:31Z-
dc.date.created2022-05-23-
dc.date.issued2022-05-
dc.identifier.issn1077-8926-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/12302-
dc.description.abstractWe give a proof of the Stanley-Stembridge conjecture on chromatic symmetric functions for the class of all unit interval graphs with independence number 3. That is, we show that the chromatic symmetric function of the incomparability graph of a unit interval order in which the length of a chain is at most 3 is positively expanded as a linear sum of elementary symmetric functions.-
dc.language영어-
dc.publisherAustralian National University-
dc.titlePositivity of chromatic symmetric functions associated with Hessenberg functions of bounce number 3-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000797335500001-
dc.identifier.scopusid2-s2.0-85129513095-
dc.identifier.rimsid78179-
dc.contributor.affiliatedAuthorJaehyun Hong-
dc.identifier.doi10.37236/10843-
dc.identifier.bibliographicCitationElectronic Journal of Combinatorics, v.29, no.2-
dc.relation.isPartOfElectronic Journal of Combinatorics-
dc.citation.titleElectronic Journal of Combinatorics-
dc.citation.volume29-
dc.citation.number2-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryMathematics-
Appears in Collections:
Center for Complex Geometry (복소기하학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse