Totally geodesic discs in bounded symmetric domains
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sung-Yeon Kim | - |
dc.contributor.author | Seo, Aeryeong | - |
dc.date.accessioned | 2022-08-11T22:00:10Z | - |
dc.date.available | 2022-08-11T22:00:10Z | - |
dc.date.created | 2022-07-11 | - |
dc.date.issued | 2022-09 | - |
dc.identifier.issn | 2524-7581 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12209 | - |
dc.description.abstract | In this paper, we characterize C2-smooth totally geodesic isometric embeddings f: Ω → Ω ′ between bounded symmetric domains Ω and Ω ′ which extend C1-smoothly over some open subset in the Shilov boundaries and have nontrivial normal derivatives on it. In particular, if Ω is irreducible, there exist totally geodesic bounded symmetric subdomains Ω 1 and Ω 2 of Ω ′ such that f= (f1, f2) maps into Ω 1× Ω 2⊂ Ω where f1 is holomorphic and f2 is anti-holomorphic totally geodesic isometric embeddings. If rank (Ω ′) < 2 rank (Ω) , then either f or f¯ is a standard holomorphic embedding. | - |
dc.language | 영어 | - |
dc.publisher | Springer International Publishing | - |
dc.title | Totally geodesic discs in bounded symmetric domains | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.scopusid | 2-s2.0-85132101932 | - |
dc.identifier.rimsid | 78437 | - |
dc.contributor.affiliatedAuthor | Sung-Yeon Kim | - |
dc.identifier.doi | 10.1007/s40627-022-00098-z | - |
dc.identifier.bibliographicCitation | Complex Analysis and its Synergies, v.8, no.3 | - |
dc.relation.isPartOf | Complex Analysis and its Synergies | - |
dc.citation.title | Complex Analysis and its Synergies | - |
dc.citation.volume | 8 | - |
dc.citation.number | 3 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | Bergman metric | - |
dc.subject.keywordAuthor | Bounded symmetric domain | - |
dc.subject.keywordAuthor | Holomorphicity | - |
dc.subject.keywordAuthor | Totally geodesic isometric embedding | - |