Simplicity of tangent bundles of smooth horospherical varieties of Picard number one
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jaehyun Hong | - |
dc.date.accessioned | 2022-08-04T22:00:49Z | - |
dc.date.available | 2022-08-04T22:00:49Z | - |
dc.date.created | 2022-05-10 | - |
dc.date.issued | 2022-03 | - |
dc.identifier.issn | 1631-073X | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12154 | - |
dc.description.abstract | © 2022 Elsevier Masson SAS. All rights reserved.Recently, Kanemitsu has discovered a counterexample to the long-standing conjecture that the tangent bundle of a Fano manifold of Picard number one is (semi)stable. His counterexample is a smooth horospherical variety. There is a weaker conjecture that the tangent bundle of a Fano manifold of Picard number one is simple. We prove that this weaker conjecture is valid for smooth horospherical varieties of Picard number one. Our proof follows from the existence of an irreducible family of unbendable rational curves whose tangent vectors span the tangent spaces of the horospherical variety at general points. | - |
dc.language | 영어 | - |
dc.publisher | Academie des sciences | - |
dc.title | Simplicity of tangent bundles of smooth horospherical varieties of Picard number one | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000886612500016 | - |
dc.identifier.scopusid | 2-s2.0-85128817778 | - |
dc.identifier.rimsid | 78133 | - |
dc.contributor.affiliatedAuthor | Jaehyun Hong | - |
dc.identifier.doi | 10.5802/crmath.299 | - |
dc.identifier.bibliographicCitation | Comptes Rendus Mathematique, v.360, no.1, pp.285 - 290 | - |
dc.relation.isPartOf | Comptes Rendus Mathematique | - |
dc.citation.title | Comptes Rendus Mathematique | - |
dc.citation.volume | 360 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 285 | - |
dc.citation.endPage | 290 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |