Fano deformation rigidity of rational homogeneous spaces of submaximal Picard numbers
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Qifeng Li | - |
dc.date.accessioned | 2022-07-28T04:42:47Z | - |
dc.date.available | 2022-07-28T04:42:47Z | - |
dc.date.created | 2021-05-27 | - |
dc.date.issued | 2022-06 | - |
dc.identifier.issn | 0025-5831 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/11932 | - |
dc.description.abstract | © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.We study the question whether rational homogeneous spaces are rigid under Fano deformation. In other words, given any smooth connected family π: X→ Z of Fano manifolds, if one fiber is biholomorphic to a rational homogeneous space S, is π an S-fibration? The cases of Picard number one were answered by Hwang and Mok. The manifold F(1 , Q5) is the unique rational homogeneous space of Picard number one that is not rigid under Fano deformation, and a Fano degeneration of it is constructed by Pasquier and Perrin. For higher Picard number cases, one notices that the Picard number of a rational homogeneous space G/P satisfies ρ(G/ P) ≤ rank (G). Weber and Wiśniewski proved that the rational homogeneous spaces G/P with ρ(G/ P) = rank (G) (i.e. complete flag manifolds) are rigid under Fano deformation. In this paper, we show that the rational homogeneous spaces G/P with ρ(G/ P) = rank (G) - 1 are rigid under Fano deformation, provided that G is a simple algebraic group of type ADE, and G/P is not biholomorphic to F(1 , 2 , P3) or F(1 , 2 , Q6). We also show that F(1 , 2 , P3) has a unique Fano degeneration, which is explicitly constructed. Furthermore, the structure of possible Fano degenerations of F(1 , 2 , Q6) is also described explicitly. Our main result is obtained by applying the theory of Cartan connections and symbol algebras. | - |
dc.language | 영어 | - |
dc.publisher | Springer Science and Business Media Deutschland GmbH | - |
dc.title | Fano deformation rigidity of rational homogeneous spaces of submaximal Picard numbers | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000640943500002 | - |
dc.identifier.scopusid | 2-s2.0-85104825589 | - |
dc.identifier.rimsid | 75678 | - |
dc.contributor.affiliatedAuthor | Qifeng Li | - |
dc.identifier.doi | 10.1007/s00208-021-02181-y | - |
dc.identifier.bibliographicCitation | Mathematische Annalen, v.383, no.1-2, pp.203 - 257 | - |
dc.relation.isPartOf | Mathematische Annalen | - |
dc.citation.title | Mathematische Annalen | - |
dc.citation.volume | 383 | - |
dc.citation.number | 1-2 | - |
dc.citation.startPage | 203 | - |
dc.citation.endPage | 257 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordAuthor | Fano Manifolds | - |
dc.subject.keywordAuthor | Tangent Bundle | - |
dc.subject.keywordAuthor | Projective Variety | - |