Liquid-phase water isotope separation using graphene-oxide membranes
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ching, Karin | - |
dc.contributor.author | Baker, Andy | - |
dc.contributor.author | Tanaka, Ryoji | - |
dc.contributor.author | Zhao, Tingwen | - |
dc.contributor.author | Su, Zhen | - |
dc.contributor.author | Rodney S. Ruoff | - |
dc.contributor.author | Zhao, Chuan | - |
dc.contributor.author | Chen, Xianjue | - |
dc.date.accessioned | 2021-12-08T07:30:00Z | - |
dc.date.available | 2021-12-08T07:30:00Z | - |
dc.date.created | 2021-11-29 | - |
dc.date.issued | 2022-01 | - |
dc.identifier.issn | 0008-6223 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/10807 | - |
dc.description.abstract | We report pressure-driven liquid-phase isotope separation (dead-end filtration) to enrich D and O-18 in natural water using graphene oxide (G-O) and UV-reduced graphene oxide (UV-rG-O) membranes. The isotope diffusivity (molecular diffusion and adsorption separation) was found to be responsible for isotope separation. Adsorption separation is the dominant mechanism for improvements in D and O-18 enrichment via increased G-O loading that leads to the increased number of adsorption sites (epoxy and hydroxyl groups on G-O), and higher degrees of reduction of G-O that result in the narrowing of the nanochannels which decreases the portion of water molecules experiencing molecular diffusion. The best performing membrane was "UV-rG-O" made by exposing a G-O membrane to 24 h UV irradiation from one side, showing enrichment of D of 0.5% for D/H and O-18 of 0.08% for O-18/O-16 in a single-stage experiment, without contribution from the vapor pressure isotope effect. This work improves the understanding of the mechanisms for graphene-based membrane separation of D and O-18 enriched water. (C) 2021 Elsevier Ltd. All rights reserved. | - |
dc.language | 영어 | - |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | - |
dc.title | Liquid-phase water isotope separation using graphene-oxide membranes | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000712465900006 | - |
dc.identifier.scopusid | 2-s2.0-85119274968 | - |
dc.identifier.rimsid | 76783 | - |
dc.contributor.affiliatedAuthor | Rodney S. Ruoff | - |
dc.identifier.doi | 10.1016/j.carbon.2021.10.009 | - |
dc.identifier.bibliographicCitation | CARBON, v.186, pp.344 - 354 | - |
dc.relation.isPartOf | CARBON | - |
dc.citation.title | CARBON | - |
dc.citation.volume | 186 | - |
dc.citation.startPage | 344 | - |
dc.citation.endPage | 354 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | GRAPHITE OXIDE | - |
dc.subject.keywordPlus | REDUCTION | - |
dc.subject.keywordPlus | DIFFUSION | - |
dc.subject.keywordPlus | OXYGEN | - |
dc.subject.keywordPlus | H2O | - |
dc.subject.keywordPlus | FRACTIONATION | - |
dc.subject.keywordPlus | PERMEATION | - |
dc.subject.keywordPlus | ADSORPTION | - |
dc.subject.keywordPlus | D2O | - |
dc.subject.keywordAuthor | Graphene oxide | - |
dc.subject.keywordAuthor | Membranes | - |
dc.subject.keywordAuthor | Water isotopes | - |
dc.subject.keywordAuthor | Filtration | - |
dc.subject.keywordAuthor | Isotope effect | - |
dc.subject.keywordAuthor | Diffusion | - |