BROWSE

Related Scientist

CMCM's photo.

CMCM
다차원 탄소재료 연구단
more info

ITEM VIEW & DOWNLOAD

Graphitization with Suppressed Carbon Loss for High-Quality Reduced Graphene Oxide

Cited 0 time in webofscience Cited 0 time in scopus
15 Viewed 0 Downloaded
Title
Graphitization with Suppressed Carbon Loss for High-Quality Reduced Graphene Oxide
Author(s)
Yoon, Jong-Chul; Xinyue Dai; Kang, Kyeong-Nam; Hwang, Jongha; Kwak, Myung-Jun; Feng Ding; Jang, Ji-Hyun
Publication Date
2021-07
Journal
ACS Nano, v.15, no.7, pp.11655 - 11666
Publisher
American Chemical Society
Abstract
© 2021 American Chemical Society.An efficient reduction method to obtain high-quality graphene sheets from mass-producible graphene oxide is highly desirable for practical applications. Here, we report an in situ deoxidation and graphitization mechanism for graphene oxide that allows for high-quality reduced graphene oxide sheets under the low temperature condition (<300 °C) by utilizing a well-known Fischer-Tropsch reaction catalyst (CuFeO2). By applying modified FTR conditions, where graphene oxide was reduced on the catalyst surface under the hydrogen-poor condition, deoxidation with much suppressed carbon loss was possible, resulting in high-quality graphene sheets. Our experimental data and density functional theory calculations proved that reduction which occurred on the CuFeO2 surface preferentially removed adsorbed oxygen atoms in graphene oxide sheets, leaving dissociated carbon structures to be restored to a near-perfect few-layer graphene sheet. TGA-mass data revealed that GO with catalysts released 92.8% less carbon-containing gases than GO without catalysts during the reduction process, which suggests that this process suppressed carbon loss in graphene oxide sheets, leading to near-perfect graphene. The amount of oxygen related to the epoxide group in the basal plane of GO significantly decreased to near zero (from 43.84 to 0.48 at. %) in catalyst-assisted reduced graphene oxide (CA-rGO). The average domain size and the density of defects of CA-rGO were 4 times larger and 0.1 times lower than those for thermally reduced graphene oxide (TrGO), respectively. As a result, CA-rGO had a 246 and 8 times lower electrical resistance than TrGO and CVD-graphene. With these performances, CA-rGO coated paper connected to a coin-cell battery successfully lit an LED bulb, and CA-rGO itself acted as an efficient catalyst for both the hydrogen evolution reaction and the oxygen evolution reaction.
URI
https://pr.ibs.re.kr/handle/8788114/10232
DOI
10.1021/acsnano.1c02178
ISSN
1936-0851
Appears in Collections:
Center for Multidimensional Carbon Materials(다차원 탄소재료 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse