Classes of graphs with no long cycle as a vertex-minor are polynomially \(\chi \)-bounded

Ringi Kim\(^a,1\), O-joung Kwon\(^b,2\), Sang-il Oum\(^c,a,3\), Vaidy Sivaraman\(^d\)

\(^a\) Department of Mathematical Sciences, KAIST, Daejeon, South Korea
\(^b\) Department of Mathematics, Incheon National University, Incheon, South Korea
\(^c\) Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea
\(^d\) Department of Mathematics, University of Central Florida, Orlando, United States of America

A class \(\mathcal{G} \) of graphs is \(\chi \)-bounded if there is a function \(f \) such that for every graph \(G \in \mathcal{G} \) and every induced subgraph \(H \) of \(G \), \(\chi(H) \leq f(\omega(H)) \). In addition, we say that \(\mathcal{G} \) is polynomially \(\chi \)-bounded if \(f \) can be taken as a polynomial function. We prove that for every integer \(n \geq 3 \), there exists a polynomial \(f \) such that \(\chi(G) \leq f(\omega(G)) \) for all graphs with no vertex-minor isomorphic to the cycle graph \(C_n \). To prove this, we show that if \(\mathcal{G} \) is polynomially \(\chi \)-bounded, then so is the closure of \(\mathcal{G} \) under taking the 1-join operation.

© 2019 Elsevier Inc. All rights reserved.

E-mail addresses: kimrg@kaist.ac.kr (R. Kim), ojoungkwon@gmail.com (O. Kwon), sangil@ibs.re.kr (S. Oum), vaidysivaraman@gmail.com (V. Sivaraman).

1 Supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1C1B6003786).

2 Supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. NRF-2018R1D1A1B07050294).

3 Supported by the Institute of Basic Sciences (No. IBS-R029-C1) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2017R1A2B4005020).

https://doi.org/10.1016/j.jctb.2019.06.001
0095-8956/© 2019 Elsevier Inc. All rights reserved.
1. Introduction

A class \mathcal{G} of graphs is said to be hereditary if for every $G \in \mathcal{G}$, every graph isomorphic to an induced subgraph of G belongs to \mathcal{G}. A class \mathcal{G} of graphs is χ-bounded if there is a function f such that for every graph $G \in \mathcal{G}$ and every induced subgraph H of G, $\chi(H) \leq f(\omega(H))$. The function f is called a χ-bounding function. This concept was first formulated by Gyárfás [9]. In particular, we say that \mathcal{G} is polynomially χ-bounded if f can be taken as a polynomial function.

Recently, many open problems on χ-boundedness have been resolved; see a recent survey by Scott and Seymour [14]. Yet we do not have much information on graph classes that are polynomially χ-bounded. For instance, Gyárfás [9] showed that the class of P_n-free graphs is χ-bounded but it is still open [8,13] whether it is polynomially χ-bounded for $n \geq 5$. Regarding polynomially χ-boundedness, Esperet proposed the following question, which remains open.

Question 1.1 (Esperet; see [10]). Is every χ-bounded class of graphs polynomially χ-bounded?

Towards answering this question, it is interesting to know some graph operations that preserve the property of polynomial χ-boundedness. If we have such graph operations, then we can use them to generate polynomially χ-bounded graph classes.

In this direction, Chudnovsky, Penev, Scott, and Trotignon [4] showed that if a hereditary class \mathcal{C} is polynomially χ-bounded, then its closure under disjoint union and substitution is again polynomially χ-bounded.

We prove the analog of their result for the 1-join. For graphs G_1 and G_2 with $|V(G_1)|, |V(G_2)| \geq 3$ and $V(G_1) \cap V(G_2) = \emptyset$, we say that a graph G is obtained from G_1 and G_2 by 1-join if there are vertices $v_1 \in V(G_1)$ and $v_2 \in V(G_2)$ such that G is obtained from the disjoint union of G_1 and G_2 by deleting v_1 and v_2 and adding all edges between every neighbor of v_1 in G_1 and every neighbor of v_2 in G_2. If so, then we say that G is the 1-join of (G_1, v_1) and (G_2, v_2). For a class \mathcal{G}, let \mathcal{G}^k be its closure under disjoint union and 1-join. Note that if \mathcal{G} is closed under taking isomorphisms, then so is \mathcal{G}^k. We will see in Section 2 that \mathcal{G}^k is hereditary if \mathcal{G} is hereditary.

Theorem 1.2. If \mathcal{G} is a polynomially χ-bounded class of graphs, then so is \mathcal{G}^k.

Dvořák and Král [7] and Kim [11] independently showed that for every hereditary class \mathcal{G} of graphs that is χ-bounded, its closure under taking the 1-joins is again χ-bounded. However, in both papers, the χ-bounding function g for the new class is recursively defined as $g(n) = O(f(n)g(n-1))$ for a χ-bounding function f for \mathcal{G}. So, $g(n)$ is exponential under their constructions.

We shall see that if f is a polynomial, then $g(n-1)$ in the recurrence relation can be replaced by some polynomial f^*. This technique allows us to prove Theorem 1.2.
As an application, we investigate the following conjecture of Geelen proposed in 2009. The definition of vertex-minors will be reviewed in Section 2.

Conjecture 1.3 (Geelen; see [7]). For every graph H, the class of graphs with no vertex-minor isomorphic to H is χ-bounded.

Conjecture 1.3 is known to be true when H is a wheel graph, shown by Choi, Kwon, Oum, and Wollan [1]. Motivated by the question of Esperet, we may ask the following.

Question 1.4. Is it true that for every graph H, the class of graphs with no vertex-minor isomorphic to H is polynomially χ-bounded?

If this holds for H, then the class of H-vertex-minor free graphs satisfies the *Erdős-Hajnal property*, which means that there is a constant $c > 0$ such that every graph G in this class has an independent set or a clique of size at least $|V(G)|^c$. Recently, Chudnovsky and Oum [3] proved that the Erdős-Hajnal property holds for the class of H-vertex-minor free graphs for all H.

We write P_n to denote the path graph on n vertices and C_n to denote the cycle graph on n vertices. Let $K_n \boxtimes K_n$ be the graph on $2n$ vertices $\{a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n\}$ such that $\{a_1, a_2, \ldots, a_n\}$ is a clique, $\{b_1, b_2, \ldots, b_n\}$ is a stable set, and for all $1 \leq i, j \leq n$, a_i is adjacent to b_j if and only if $i \geq j$. See Fig. 1 for an illustration of $K_6 \boxtimes K_6$.

In Section 4, we prove the following theorem.

Theorem 1.5. Let $n \geq 4$. If a graph G has no induced subgraph isomorphic to P_n or $K_{[n/2]} \boxtimes K_{[n/2]}$, then

$$\chi(G) \leq (n - 3)^{[n/2]-1}\omega(G)^{[n/2]-1}.$$

We use this graph $K_{[n/2]} \boxtimes K_{[n/2]}$ because it has a vertex-minor isomorphic to P_n, shown by Kwon and Oum [12, Lemma 2.8].

Lemma 1.6 (Kwon and Oum [12, Lemma 2.8]). The graph $K_{[n/2]} \boxtimes K_{[n/2]}$ has a vertex-minor isomorphic to P_n.

This allows us to obtain the following corollary of Theorem 1.5.
Corollary 1.7. The class of graphs with no vertex-minor isomorphic to P_n is polynomially χ-bounded.

Kwon and Oum [12] proved the following theorem, stating that a prime graph with a long induced path must contain a long induced cycle as a vertex-minor. A graph is prime if it is not the 1-join of (G_1,v_1) and (G_2,v_2) for some graphs G_1, G_2 with $|V(G_1)|, |V(G_2)| \geq 3$.

Theorem 1.8 (Kwon and Oum [12]). If a prime graph has an induced path of length $[6.75n^7]$, then it has a cycle of length n as a vertex-minor.

We deduce the following stronger theorem from Corollary 1.7 by using Theorems 1.2 and 1.8. This answers Question 1.4 for a long cycle.

Theorem 1.9. The class of graphs with no vertex-minor isomorphic to C_n is polynomially χ-bounded.

Proof. Let \mathcal{G} be the class of graphs having no vertex-minor isomorphic to P_m for $m = [6.75n^7]$. By Corollary 1.7, \mathcal{G} is polynomially χ-bounded. By Theorem 1.2, \mathcal{G}^k is polynomially χ-bounded. Let \mathcal{H} be the class of graphs having no vertex-minor isomorphic to C_n. Let $G \in \mathcal{H}$. We claim that $G \in \mathcal{G}^k$. We may assume that G is connected. Every connected prime induced subgraph of G is in \mathcal{G} by Theorem 1.8. Then G can be obtained from connected prime induced subgraphs of G by taking 1-join repeatedly. Thus, $G \in \mathcal{G}^k$. This proves that $\mathcal{H} \subseteq \mathcal{G}^k$. \qed

Because C_m contains C_n as a vertex-minor whenever $m \geq n$, we may ask a stronger question on whether or not the class of graphs with no induced subgraph isomorphic to C_m for some $m \geq n$ is polynomially χ-bounded. It is not known. The following theorem of Chudnovsky, Scott, and Seymour [6] was initially a conjecture of Gyárfás [9] in 1985.

Theorem 1.10 (Chudnovsky, Scott, and Seymour [6]). The class of graphs with no induced subgraph isomorphic to a graph in $\{C_m : m \geq n\}$ is χ-bounded.

We remark that as far as we know, it is not known whether the class of graphs with no P_5 induced subgraph is polynomially χ-bounded.

This paper is organized as follows. We will review necessary definitions in Section 2. In Section 3, we will present a proof of Theorem 1.2. In Section 4, we will prove Theorem 1.5. In Section 5, we discuss related problems.
2. Preliminaries

All graphs in this paper are simple and undirected. For a graph G, let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. A clique of a graph is a set of pairwise adjacent vertices. For a graph G, let $\omega(G)$ be the maximum number of vertices in a clique of G and $\chi(G)$ be the chromatic number of G.

Let G be a graph. For a vertex subset S of G, we denote by $G[S]$ the subgraph of G induced by S. For a vertex v of G, we denote by $G \setminus v$ the graph obtained from G by removing v. For an edge e of G, we write $G \setminus e$ to denote the subgraph obtained from G by deleting e. For $v \in V(G)$, let $N_G(v)$ be the set of neighbors of v in G. For a set X of vertices, let $N_G(X) = \bigcup_{v \in X} N_G(v) \setminus X$.

For two graphs G_1 and G_2, the disjoint union of G_1 and G_2 is a graph $(V(G_1) \cup V(G_2), E(G_1) \cup E(G_2))$ where G_1' is an isomorphic copy of G_1 and G_2' is an isomorphic copy of G_2 such that $V(G_1') \cap V(G_2') = \emptyset$. If $V(G_1') \cap V(G_2') = \emptyset$, then we take $G_1' = G_1$ and $G_2' = G_2$ for convenience.

For two graphs G_1 and G_2 on disjoint vertex sets and a vertex $v \in V(G_1)$, we say that a graph G is obtained from G_1 by substituting G_2 for v in G_1, if

- $V(G) = (V(G_1) \setminus \{v\}) \cup V(G_2)$,
- $E(G) = E(G_1 \setminus v) \cup E(G_2) \cup \{xy : x \in N_{G_1}(v), y \in V(G_2)\}$.

For two sets A, A' with $A \subseteq A'$, we say that a function $f' : A' \to B$ extends a function $f : A \to B$ if $f'(a) = f(a)$ for all $a \in A$.

Lemma 2.1. If G is a hereditary class of graphs, then so is G^{k}.

Proof. We show that for every $G \in G^{k}$ and $v \in V(G)$, $G \setminus v \in G^{k}$. We proceed by induction on $|V(G)|$. If $G \in G$, then we are done since G is hereditary.

So, we may assume that $G \notin G$. Then, G is the disjoint union of G_1 and G_2 for some $G_1, G_2 \in G^{k}$ or the 1-join of (G_1, v_1) and (G_2, v_2) for some $G_1, G_2 \in G^{k}$ and $v_i \in V(G_i)$ for $i = 1, 2$ where $|V(G_1)|, |V(G_2)| \geq 3$.

In the first case, we may assume that $v \in V(G_1)$. Then, by the induction hypothesis, $G_1 \setminus v \in G^{k}$, and since $G \setminus v$ is the disjoint union of $G_1 \setminus v$ and G_2, it follows that $G \setminus v$ is contained in G^{k}.

In the second case, by symmetry, we may assume that $v \in V(G_1) \setminus \{v_1\}$. By the induction hypothesis, $G_1 \setminus v \in G^{k}$. If $|V(G_1)| > 3$, then $G \setminus v$ is in G^{k} since it is the 1-join of $(G_1 \setminus v, v_1)$ and (G_2, v_2). If $|V(G_1)| = 3$, then $G \setminus v$ is isomorphic to either G_2 or the disjoint union of K_1 and $G_2 \setminus v_2$. In either case $G \setminus v$ is contained in G^{k}. □

Vertex-minors Now we are going to define vertex-minors. Actually, the readers may skip this part, if they assume Lemma 1.6 and Theorem 1.8 from other papers.
For a vertex v in a graph G, the local complementation at v results in the graph obtained from G by replacing the subgraph of G induced on $N_G(v)$ by its complement. We write $G \ast v$ to denote the graph obtained from G by applying local complementation at v. In other words, $G \ast v$ is a graph on $V(G)$ such that two distinct vertices x, y are adjacent in $G \ast v$ if and only if exactly one of the following holds.

(i) Both x and y are neighbors of v in G.
(ii) x is adjacent to y in G.

A graph H is locally equivalent to G if H can be obtained from G by a sequence of local complementations. We say that a graph H is a vertex-minor of a graph G if H is an induced subgraph of a graph locally equivalent to G.

For an edge uv of a graph G, the pivot at uv is an operation to obtain $G \ast v \ast u \ast v$ from G. We write $G \wedge uv := G \ast u \ast v \ast u$. We say that a graph H is a pivot-minor of a graph G if H is obtained from G by a sequence of pivots and vertex deletions.

3. Polynomials χ-boundedness for 1-join

For a class \mathcal{G} of graphs, let \mathcal{G}^\ast be the closure of \mathcal{G} under disjoint union and substitution. We will use the following result due to Chudnovsky, Penev, Scott, and Trotignon [4].

Theorem 3.1 *(Chudnovsky, Penev, Scott, and Trotignon [4])* If \mathcal{G} is a polynomially χ-bounded class of graphs, then \mathcal{G}^\ast is polynomially χ-bounded.

The following observation relates two graph classes \mathcal{G}^k and \mathcal{G}^\ast.

Lemma 3.2. Let \mathcal{G} be a hereditary class of graphs. If $G \in \mathcal{G}^k$ and $v \in V(G)$, then $G[N_G(v)] \in \mathcal{G}^\ast$.

Proof. We prove by induction on $|V(G)|$.

If $G \in \mathcal{G}$, then we are done, since \mathcal{G} is closed under induced subgraphs and $\mathcal{G} \subseteq \mathcal{G}^\ast$. If G is the disjoint union of two graphs G_1, G_2 from \mathcal{G}^k and $v \in V(G_1)$, then by the induction hypothesis on the graph G_1, the claim follows.

Suppose that G is the 1-join of two graphs (G_1, v_1) and (G_2, v_2) where $G_1, G_2 \in \mathcal{G}^k$ and $|V(G_1)|, |V(G_2)| \geq 3$. Without loss of generality, we may assume that $v \in V(G_1 \setminus v_1)$. Let $G_1[N_{G_1}(v)] = G_v$, and $G_2[N_{G_2}(v_2)] = G_2$. Then, by the induction hypothesis, $G_v \in \mathcal{G}^\ast$, and $G_2' \in \mathcal{G}^\ast$ because $|V(G_1)|, |V(G_2)| < |V(G)|$.

Since \mathcal{G} is hereditary, so is \mathcal{G}^\ast. We may assume that G_2' has at least one vertex because otherwise $G[N_{G_2}(v)] = G_v \setminus v_1 \in \mathcal{G}^\ast$. We may also assume that v is adjacent to v_1 in G_1 because otherwise $G[N_G(v)] = G_v \in \mathcal{G}^\ast$. Then $G[N_G(v)]$ can be obtained from G_v by substituting G_2' for v_1 and therefore $G[N_G(v)]$ belongs to \mathcal{G}^\ast. This completes the proof. □
Let us now define a structure to describe how a connected graph in \mathcal{G}^k is composed from graphs in \mathcal{G}. A composition tree is a triple (T, ϕ, ψ) of a tree T, a map ϕ defined on $V(T)$ and a map ψ defined on $E(T)$ such that

- for $t \in V(T)$, $\phi(t)$ is a connected graph, say G_t, on at least 3 vertices where graphs in $\{G_t : t \in V(T)\}$ are vertex-disjoint,
- for $st \in E(T)$, $\psi(st) = \{u, v\}$ for some $u \in V(G_s)$ and $v \in V(G_t)$, and
- for distinct $e_1 \neq e_2 \in E(T)$, $\psi(e_1)$ and $\psi(e_2)$ are disjoint.

If a composition tree (T, ϕ, ψ) is given, then one can construct a connected graph G from (T, ϕ, ψ) by taking 1-joins repeatedly as follows:

- if $|V(T)| = 1$, say $V(T) = \{t\}$, then $G = \phi(t)$,
- if $|V(T)| > 1$, let $e = t_1t_2 \in E(T)$ and T_i be the subtree of $T \setminus e$ containing t_i for each $i = 1, 2$. Let ϕ_i be the restriction of ϕ on $V(T_i)$ and ψ_i be the restriction of ψ on $E(T_i)$ for each $i = 1, 2$. Let G_i be a graph constructed from (T_i, ϕ_i, ψ_i) for $i = 1, 2$. Then, G is the 1-join of (G_1, v_1) and (G_2, v_2) where $v_i \in V(G_i) \cap \psi(e)$. It is straightforward to see that the choice of e does not make any difference to the obtained graph G.

If a vertex v of $\phi(t)$ for some node t of T is in $\psi(e)$ for some edge e of T, then v is called a marker vertex. After applying all 1-joins, marker vertices will disappear.

Lemma 3.3. Let \mathcal{G} be a class of graphs. Let G be a connected graph in \mathcal{G}^k with at least three vertices. Then there exists a composition tree (T, ϕ, ψ) that constructs G such that $\phi(t) \in \mathcal{G}$ for every node t of T.

Proof. We proceed by induction on $|V(G)|$. We may assume that $G \notin \mathcal{G}$. Since G is connected, G is the 1-join of (G_1, v_1) and (G_2, v_2) for some graphs G_1, G_2 in \mathcal{G}^k and $v_1 \in V(G_1)$, $v_2 \in V(G_2)$ where $|V(G_1)|, |V(G_2)| \geq 3$. Since G is connected, both G_1 and G_2 are connected. By the induction hypothesis, we obtain two composition trees. We can combine them to obtain a composition tree (T, ϕ, ψ) constructing G.

Lemma 3.4. Let c_1, c_2 be positive integers. Let G be a connected graph constructed by a composition tree (T, ϕ, ψ) such that $\phi(t)$ is c_1-colorable for each node t of T and $G[N_G(w)]$ is c_2-colorable for each vertex w of G. Let v be a vertex of G. Then for every proper c_2-coloring β of $G[N_G(v)]$, there exist functions $\alpha' : V(G) \setminus \{v\} \to \{0, 1, 2, \ldots, c_1\}$ and $\beta' : V(G) \setminus \{v\} \to \{1, 2, \ldots, c_2\}$ such that

1. $\alpha'(w) = 0$ and $\beta'(w) = \beta(w)$ for every neighbor w of v,
2. $c = \alpha' \times \beta'$ is a proper $(c_1 + 1)c_2$-coloring of $G \setminus v$.

Proof. We proceed by induction on $|V(G)|$.

If $|V(T)| = 1$, then $G = \phi(t)$ for the unique node t of T and so G has a proper c_1-coloring $h : V(G \setminus v) \to \{1, 2, \ldots, c_1\}$. We define α' and β' on $V(G \setminus v)$ as follows:

$$
\alpha'(w) = \begin{cases}
0 & \text{if } w \in N_G(v), \\
h(w) & \text{otherwise,}
\end{cases}
\quad \text{and} \quad
\beta'(w) = \begin{cases}
\beta(w) & \text{if } w \in N_G(v), \\
1 & \text{otherwise.}
\end{cases}
$$

Clearly, $\alpha' \times \beta'$ is a proper $(c_1 + 1)c_2$-coloring of $G \setminus v$.

Thus we may assume $|V(T)| > 1$. Let t_0 be the unique node of T such that $v \in V(\phi(t_0))$. Let $G_0 := \phi(t_0)$. Let t_1, t_2, \ldots, t_m be the neighbors of t_0 in T. For each $i \in \{1, 2, \ldots, m\}$, let $v_i \in V(G_0)$ and $u_i \in V(\phi(t_i))$ be vertices such that $\psi(t_0 t_i) = \{v_i, u_i\}$ and let T_i be the connected component of $T \setminus t_0$ containing t_i. For each $i \in \{1, 2, \ldots, m\}$, let ϕ_i be the restriction of ϕ on $V(T_i)$ and ψ_i be the restriction of ψ on $E(T_i)$ and G_i be the graph constructed from a composition tree (T_i, ϕ_i, ψ_i).

Let $h : V(G_0) \to \{1, 2, \ldots, c_1\}$ be a proper c_1-coloring of G_0. Let α'_0, β'_0 be maps defined on $V(G_0) \setminus \{v, v_1, \ldots, v_m\}$ such that for $w \in V(G_0) \setminus \{v, v_1, \ldots, v_m\}$,

$$
\alpha'_0(w) = \begin{cases}
0 & \text{if } w \notin N_{G_0}(v), \\
h(w) & \text{otherwise,}
\end{cases}
\quad \text{and} \quad
\beta'_0(w) = \begin{cases}
\beta(w) & \text{if } w \notin N_{G_0}(v), \\
1 & \text{otherwise.}
\end{cases}
$$

Now we are going to define, for each $i \in \{1, 2, \ldots, m\}$, a proper c_2-coloring β_i of $G_i[N_{G_i}(u_i)]$. If v_i is adjacent to v in G_0, then $N_{G_i}(u_i)$ is a subset of $N_G(v)$ and so let us define β_i to be the proper c_2-coloring of $G[N_{G_i}(u_i)]$ induced by β.

If v_i is non-adjacent to v in G_0, then we claim that there exists a vertex y of G such that $N_{G_i}(u_i) \subseteq N_G(y)$. Since G_0 is connected, v_i has a neighbor x in G_0. If x is not a marker vertex, then $N_{G_i}(u_i) \subseteq N_G(x)$. If x is a marker vertex, say $x = v_j$ for some $j \neq i$, then there exists a neighbor y of u_j in G_j because G_j is connected and $|V(G_j)| \neq 1$. Now we observe that $N_{G_i}(u_i) \subseteq N_G(y)$. This proves the claim. By the claim, we can define β_i as a proper c_2-coloring of $G_i[N_{G_i}(u_i)]$ induced by a proper c_2-coloring of $G[N_{G_i}(y)]$.

Observe that $|V(G_i)| < |V(G)|$ for all $i \in \{1, 2, \ldots, m\}$ because G_0 has at least three vertices. Now, by the induction hypothesis, for each $i \in \{1, 2, \ldots, m\}$, there exist maps $\alpha'_i : V(G_i \setminus u_i) \to \{0, 1, \ldots, c_1\}$ and $\beta'_i : V(G_i \setminus u_i) \to \{1, 2, \ldots, c_2\}$ such that for every $w \in N_{G_i}(u_i)$,

$$
\alpha'_i(w) = \begin{cases}
h(v_i) & \text{if } v_i \text{ is non-adjacent to } v \text{ in } G_0, \\
0 & \text{otherwise,}
\end{cases}
\quad \text{and} \quad
\beta'_i(w) = \beta_i(w),
$$

and $\alpha'_i \times \beta'_i$ is a proper $(c_1 + 1)c_2$-coloring of $G_i \setminus u_i$, because we may swap colors 0 and $h(v_i)$ in α'_i after applying the induction hypothesis.
Now we define maps α' and β' on $V(G) \setminus \{v\}$ such that for $w \in V(G) \setminus \{v\}$,

$$
\alpha'(w) = \alpha'_i(w) \text{ and } \beta'(w) = \beta'_i(w) \text{ if } w \in V(G_i) \text{ for some } i \in \{0, 1, 2, \ldots, m\}.
$$

Clearly, β' extends β. In addition, $\alpha'(w) = 0$ for all neighbors w of v in G.

We claim that $c = \alpha' \times \beta'$ is a proper coloring of $G \setminus v$. Let $x, y \in V(G \setminus v)$ be adjacent vertices in $G \setminus v$. If both x and y are neighbors of v, then $\beta'(x) = \beta(x) \neq \beta(y) = \beta'(y)$.

So we may assume that y is not a neighbor of v.

- If $x, y \in V(G_0)$, then $\alpha'(x) \neq \alpha'(y)$ because $\alpha'(x) \in \{0, h(x)\}$ and $\alpha'(y) = h(y) \neq 0$.
- If $x, y \in V(G_i)$ for some $i \in \{1, 2, \ldots, m\}$, then $(\alpha'(x), \beta'(x)) \neq (\alpha'(y), \beta'(y))$ because $\alpha'_i \times \beta'_i$ is a proper coloring of $G_i \setminus u_i$.
- If $V(G_0)$ contains exactly one of x and y, say x, then there exists $i \in \{1, 2, \ldots, m\}$ such that $y \in V(G_i)$. Then x is adjacent to v_i in G_0 and y is adjacent to u_i in G_i. Since y is not adjacent to v, v_i is not adjacent to v in G_0 and so $\alpha'(y) = \alpha'_i(y) = h(v_i)$. As $\alpha'(x) \in \{0, h(x)\}$, we deduce that $\alpha'(x) \neq \alpha'(y)$.
- If $x \in V(G_i)$ and $y \in V(G_j)$ for distinct $i, j \in \{1, 2, \ldots, m\}$, then x is adjacent to u_i in G_i, v_i is adjacent to v_j in G_0, and u_j is adjacent to y in G_j. Since y is not adjacent to v, v_j is not adjacent to v in G_0 and so $\alpha'(y) = \alpha'_j(y) = h(v_j)$. Note that $\alpha'(x) \in \{0, h(v_i)\}$ and therefore $\alpha(x) \neq \alpha(y)$ because h is a proper coloring of G_0.

Therefore, c is a proper coloring of $G \setminus v$. This completes the proof. □

Proof of Theorem 1.2. We may assume that \mathcal{G} is hereditary, by replacing \mathcal{G} with the closure of \mathcal{G} under isomorphism and taking induced subgraphs, if necessary.

Let f be a χ-bounding function for \mathcal{G} that is a polynomial. We may assume that $1 \leq f(0) \leq f(1) \leq f(2) \leq \cdots$, by replacing $f(x) = \sum_i a_i x^i$ with $\sum_i |a_i| x^i$ if needed. By Theorem 3.1, \mathcal{G}^* is χ-bounded by a polynomial f^*. We may assume that $1 \leq f^*(0) \leq f^*(1) \leq f^*(2) \leq \cdots$.

We claim that

$$
\forall G \in \mathcal{G}^k. \chi(G) \leq (f(\omega(G)) + 1)f^*(\omega(G) - 1)
$$

for all $G \in \mathcal{G}^k$. This claim implies the theorem because \mathcal{G}^k is hereditary by Lemma 2.1.

Let $k = \omega(G)$. We may assume that $k > 1$. We may assume that G is connected because \mathcal{G}^k is hereditary and both f and f^* are non-decreasing. We may assume that G has at least three vertices. By Lemma 3.3, G has a composition tree (T, ϕ, ψ) with $\phi(x) \in \mathcal{G}$ for every node x of T. Note that $\omega(\phi(x)) \leq k$ because $\phi(x)$ is isomorphic to an induced subgraph of G and therefore $\chi(\phi(x)) \leq f(\omega(\phi(x))) \leq f(k)$. For each vertex $w \in V(G)$, $\omega(G[N_G(w)]) \leq k - 1$ and $G[N_G(w)]$ belongs to \mathcal{G}^* by Lemma 3.2, and so $G[N_G(w)]$ is $f^*(k - 1)$-colorable. Let v be a vertex of G. By Lemma 3.4, there exists a proper $(f(k) + 1)f^*(k - 1)$-coloring $c = \alpha' \times \beta'$ of $G \setminus v$ such that $\alpha'(w) = 0$ for every
neighbor w of v. Then we can easily extend this to a proper $(f(k) + 1)f^*(k - 1)$-coloring of G by taking $\alpha'(v) \neq 0$. □

We remark that the same method can also prove that if G is a class of graphs having an exponential χ-bounding function, then so is G^k. This is because Chudnovsky, Penev, Scott, and Trotignon [4] also prove an analogue of Theorem 3.1 for classes of graphs having exponential χ-bounding functions.

4. Graphs without P_n or $K_{[n/2]} \square \overline{K_{[n/2]}}$ induced subgraphs

Now we are ready to prove Theorem 1.5, which states that the class of graphs with no induced subgraph isomorphic to P_n or $K_{[n/2]} \square \overline{K_{[n/2]}}$ is polynomially χ-bounded.

For this section, a path from v to w is a sequence $v_0v_1\cdots v_\ell$ of distinct vertices such that $v_0 = v$, $v_\ell = w$, and v_i is adjacent to v_{i-1} for all $i = 1, 2, \ldots, \ell$. We say a path $Q := w_0w_1\cdots w_m$ extends a path $P := v_0v_1\cdots v_\ell$ if $m \geq \ell$ and $v_i = w_i$ for all $i \in \{0, 1, \ldots, \ell\}$.

For an induced path P from v to w in G, we write $\Omega(G, P)$ to denote $G \setminus (V(P) \cup N_G(V(P \setminus w)))$. A component of $\Omega(G, P)$ is attached to P if it contains a neighbor of w. A component C of $\Omega(G, P)$ is d-good if the neighbors of w in C induce a graph of chromatic number larger than d. We say C is d-bad if it is not d-good. We say P is d-good in G if $\Omega(G, P)$ has a d-good component.

Lemma 4.1. Let k, d be positive integers. Let G be a graph. If $\omega(G) \leq k$ and $\chi(G) > kd$, then G has a path P of length 1 such that $\Omega(G, P)$ has a component C attached to P and $\chi(C) > d$.

Proof. We may assume that G is connected. Let K be a maximum clique of G. By assumption, $|K| \leq k$. For each vertex x of K, let $H_x = G \setminus N_G(x)$. Since K is a maximum clique, for every vertex y, there is $x \in K$ such that $y \in V(H_x)$ and therefore $\chi(G) \leq \sum_{x \in K} \chi(H_x)$. So there exists $x \in K$ such that $\chi(H_x) > d$. Let C' be a component of H_x such that $\chi(C') = \chi(H_x)$. Since $\chi(C') > 1$ and x is an isolated vertex in H_x, $x \notin V(C')$. Since G is connected, there is a shortest path $v_0v_1\cdots v_\ell$ from $x = v_0$ to some vertex v_ℓ of C'. Let $v := v_{\ell-2}$, $w := v_{\ell-1}$, and $P := vw$. Let C be the component of $G \setminus N_G(v)$ containing C'. Then C is a component attached to P and $\chi(C) > d$. □

Lemma 4.2. If a graph G has an induced path P of length at least 1 and $\Omega(G, P)$ has a d-bad component C attached to P with $\chi(C) > d$, then there exist an induced path P' extending P by exactly 1 edge and a component C' of $\Omega(G, P')$ attached to P' such that

$$\chi(C') \geq \chi(C) - d.$$

Proof. Let w be the last vertex of P. Let C_w be the subgraph of C induced by the neighbors of w. Since C is d-bad, $\chi(C_w) \leq d$ and therefore $\chi(C \setminus N_G(w)) \geq \chi(C) - \chi(C_w) \geq \chi(C) - d > 0$. So $C \setminus N_G(w)$ has a component C' with $\chi(C') \geq \chi(C) - d$. Since
C is connected, there is a vertex $w' \in V(C_w)$ adjacent to some vertex in C'. We obtain P' by adding w' as a last vertex to P. Then C' is a component of $\Omega(G, P')$ attached to P'. □

Lemma 4.3. Let $n \geq 4$. Let G be a graph having no induced subgraph isomorphic to P_n. Let P be a path of length 1. If $\Omega(G, P)$ has a component C attached to P with $\chi(C) > d(n - 3)$, then G has a d-good induced path P' extending P.

Proof. Suppose that G has no d-good induced path extending P. By applying Lemma 4.2 $(n - 3)$ times, we can find an induced path P' of length $n - 2$ extending P and a component C' of $\Omega(G, P')$ attached to P' such that $\chi(C') \geq \chi(C) - d(n - 3) > 0$. We obtain an induced path of length $n - 1$ by taking P' and one vertex in C' adjacent to the last vertex of P'. This contradicts the assumption that G has no induced path on n vertices. □

Now we are ready to prove Theorem 1.5.

Theorem 1.5. Let $n \geq 4$. If a graph G has no induced subgraph isomorphic to P_n or $K_{[n/2]} \boxtimes K_{[n/2]}$, then

$$
\chi(G) \leq (n - 3)^{\lceil n/2 \rceil - 1}\omega(G)^{\lceil n/2 \rceil - 1}.
$$

Proof. Let $k = \omega(G)$. We may assume that G is connected. Let $G_0 = G$. Let $d_i = (n - 3)^{\lceil n/2 \rceil - i - 1}k^{\lceil n/2 \rceil - i - 1}$. Note that $\chi(G_0) > d_0$.

Inductively we will find, in G_{i-1} of $\chi(G_{i-1}) > d_{i-1}$, an induced path Q_i and connected induced subgraphs C_i, G_i of $\chi(G_i) > d_i$ as follows. For $i = 1, \ldots, \lceil n/2 \rceil - 1$, by Lemmas 4.1 and 4.3, G_{i-1} has a d_i-good induced path Q_i of length at least 1, because $d_{i-1} = d_ik(n-3)$. Let C_i be a d_i-good component of $\Omega(G_{i-1}, Q_i)$ attached to Q_i. Among all components of the subgraph of C_i induced by the neighbors of the last vertex of Q_i, we choose a component G_i of the maximum chromatic number. By the definition of a d_i-good component, $\chi(G_i) > d_i$. This constructs $G_1, G_2, \ldots, G_{\lceil n/2 \rceil - 1}$.

As $\chi(G_{\lceil n/2 \rceil - 1}) > d_{\lceil n/2 \rceil - 1} = 1$, $G_{\lceil n/2 \rceil - 1}$ contains at least one edge xy. By collecting the last two vertices of $Q_1, Q_2, \ldots, Q_{\lceil n/2 \rceil - 1}$ and x, y, we obtain an induced subgraph isomorphic to $K_{[n/2]} \boxtimes K_{[n/2]}$, contradicting the assumption on G. □

5. Discussions

Corollary 1.7 and Theorem 1.5 show that

$$
\chi(G) \leq (n - 3)^{\lceil n/2 \rceil - 1}\omega(G)^{\lceil n/2 \rceil - 1},
$$

for a graph G with no vertex-minor isomorphic to P_n. It is natural to ask the following question.
Question 5.1. Do there exist a constant c and a function $f(n)$ such that

$$\chi(G) \leq f(n)\omega(G)^c$$

for all integers n and all graphs G with no vertex-minor isomorphic to P_n?

If we replace the vertex-minor condition of G in Question 5.1 with the condition having no induced subgraph isomorphic to P_n or $K_{[n/2]} \nabla \overline{K}_{[n/2]}$, then the answer is no, by an argument in [14]. We include its proof for the completeness.

Proposition 5.2. For every constant c and a function $f(n)$, there exist a graph G and an integer n such that $\chi(G) > f(n)\omega(G)^c$ and G has no induced subgraph isomorphic to P_n or $K_{[n/2]} \nabla \overline{K}_{[n/2]}$.

Proof. There are known lower bounds on Ramsey numbers; for instance, Spencer [15] showed that for fixed k, $R(k, t) > t^{(k-1)/2+o(1)}$ for all sufficiently large t. It implies that for fixed k, for all sufficiently large t, there exists a graph $G_t^{(k)}$ having no stable set of size k and $\omega(G_t^{(k)}) < t$, $|V(G_t^{(k)})| > t^{(k-1)/2+o(1)}$. Then $\chi(G_t^{(k)}) \geq t^{(k-1)/2+o(1)}/k$.

Fix an integer k so that $(k-1)/2 > c+1$. Let $c' := f(2k)$. Then for all sufficiently large t, $\chi(G_t^{(k)}) > t^{(k-1)/2+o(1)}/k \geq c't^c$. Then for all sufficiently large t, $\chi(G_t^{(k)}) > c'\omega(G)^c$ and $G_t^{(k)}$ has no induced subgraph isomorphic to P_{2k} or $K_k \nabla \overline{K}_k$. \square

The bound (1) cannot be improved for $n = 4$, as $\chi(G) \geq \omega(G)$ in general. We will present the best possible bound for $n = 5$.

Theorem 5.3. If a graph G has no vertex-minor isomorphic to P_5, then

$$\chi(G) \leq \omega(G) + 1.$$

The following proposition trivially implies Theorem 5.3. We denote by W_n the wheel graph on $n + 1$ vertices.

Proposition 5.4. Every graph with no vertex-minor isomorphic to P_5 is perfect, unless it has a component isomorphic to C_5 or W_5.

In order to prove Proposition 5.4, we need to define the following graph classes. See Fig. 2 for an illustration.

- W'_4: the graph obtained from W_4 by deleting a spoke.
- Banner: the graph obtained from C_4 by adding a pendant edge.
- Bull: the graph obtained from C_3 by adding two pendant edges to distinct vertices of C_3.

• Dart: the graph obtained from $K_4 \setminus e$ for some edge e of K_4 by adding a pendant edge to a vertex of degree 3.

• HVN: the graph obtained from K_4 by adding a vertex of degree 2.

• Kite: the graph obtained from $K_4 \setminus e$ for some edge e of K_4 by adding a pendant edge to a divalent vertex.

We say that G is H-free if G has no induced subgraph isomorphic to H. We write \overline{G} to denote the complement of a graph G.

Proof of Proposition 5.4. From Fig. 2, it is easy to check that W_4, W'_4, a banner, a bull, a dart, an HVN and a kite are locally equivalent to P_5. Therefore, G has no induced subgraph isomorphic to any of those graphs.

We may assume that G is connected. If G is C_5-free, then G does not contain an odd hole because G is P_5-free. Since $\overline{C_5}$ is isomorphic to C_5, G is $\overline{C_5}$-free. In addition, since $\overline{W'_4}$ is the disjoint union of P_2 and P_3, G is $\overline{C_k}$-free for every odd $k \geq 7$. Therefore G is perfect by the strong perfect graph theorem [5].

Now we may assume that G contains C_5 as an induced subgraph. Let L_i be the set of vertices of G having the distance i to C_5. We may assume that G is not C_5, that is, L_1 is not empty.

We claim that L_1 is complete to L_0. Suppose $v \in L_1$ is not complete to L_0. Then v has exactly 1, 2, 3 or 4 neighbors in L_0. In each case it is easy to check that we can find an induced subgraph isomorphic to P_5, a bull, a banner or a kite, a contradiction.

Now we claim that $L_2 = \emptyset$. Suppose $v \in L_2$. Let $u \in L_1$ such that uv is an edge. Now we see that G contains a dart, a contradiction.

If two vertices u, v in L_1 are adjacent, then G contains a HVN as an induced subgraph, a contradiction. Thus, L_1 is stable.

If L_1 contains more than one vertex, then G contains W_4, a contradiction. So $|L_1| = 1$, and so $G = W_5$. □
Finally let us discuss pivot-minors instead of vertex-minors. We may ask the following question, which is stronger than Question 1.4.

Question 5.5. Is it true that for every graph H, the class of graphs with no pivot-minor isomorphic to H is polynomially χ-bounded?

We will show that this is true if H is a path. Here is a useful lemma, replacing Lemma 1.6.

Lemma 5.6. The graph $K_n \square \overline{K_n}$ has a pivot-minor isomorphic to P_{n+1}.

Proof. Let us remind that $\{a_1, a_2, \ldots, a_n\}$ is a clique and $\{b_1, b_2, \ldots, b_n\}$ is an independent set and a_i is adjacent to b_j if and only if $i \geq j$. It is easy to observe that $(K_n \square \overline{K_n}) \land a_2 b_2 \land a_3 b_3 \land a_4 b_4 \land \cdots \land a_{n-1} b_{n-1}$ has an induced path $a_1 a_2 a_3 \cdots a_n b_n$ of length n. □

So we deduce the following strengthening of Corollary 1.7 by the same proof.

Proposition 5.7. The class of graphs with no pivot-minor isomorphic to P_n is polynomially χ-bounded.

However, the analogue of Theorem 1.8 is false for pivot-minors. As mentioned in [2], if $k \not\equiv n \pmod{2}$, then C_k has no pivot-minor isomorphic to C_n. This implies that there is a prime graph with an arbitrary long induced path having no pivot-minors isomorphic to C_n.

Acknowledgment

The authors would like to thank the anonymous reviewer for suggesting various improvements and in particular, Question 5.1 and Proposition 5.2.

References

