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We revisit the electroweak phase transition in the standard model with a real scalar, utilizing several 
calculation methods to investigate scheme dependences. We quantify the numerical impacts of Nambu–
Goldstone resummation, required in one of the schemes, on the strength of the first-order electroweak 
phase transition. We also employ a gauge-independent scheme to make a comparison with the standard 
gauge-dependent results. It is found that the effect of the Nambu–Goldstone resummation is typically 
∼ 1%. Our analysis shows that both gauge-dependent and -independent methods give qualitatively the 
same result within theoretical uncertainties. In either methods, the scale uncertainties in the ratio of 
critical temperature and the corresponding Higgs vacuum expectation value are more than 10%, which 
signifies the importance of higher-order corrections.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Cosmic baryon asymmetry [1] is one of the longstanding 
problems in particle physics and cosmology. Though the stan-
dard model (SM) can satisfy the so-called the Sakharov crite-
ria [2] in principle, the discovered Higgs boson with a mass of 
125 GeV [3] is incompatible with successful electroweak baryoge-
nesis (EWBG) [4] since the electroweak phase transition (EWPT) is 
a smooth crossover [5] rather than first order with expanding bub-
bles. It is known that this drawback can be easily circumvented by 
augmenting the minimal Higgs sector. The simplest extension is to 
add an SU(2)L singlet scalar, which provides not only a strong first-
order EWPT but also a dark matter candidate if a Z2 symmetry is 
imposed [6,8–13].

A thorny problem in investigating EWPT using a perturbative 
effective potential is the dependence on a gauge fixing parame-
ter ξ [14,15] (for recent studies, see, e.g., Refs. [16,17]). For in-
stance, the Higgs vacuum expectation value (VEV) obtained by the 
effective potential can change with a varying ξ . Such an unwanted 
ξ dependence eventually contaminate a baryon-number preserv-
ing criterion: vC /TC � 1, where TC denotes the critical tempera-
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ture associated with the phase transition and vC is the doublet 
Higgs VEV at TC . As a result, any phenomenological consequences 
derived from this criteria suffer from the ξ dependence and are 
therefore unreliable unless the dependence can be kept under con-
trol.

Common lore is that if the EWPT is driven by scalar thermal 
loops or a tree-potential barrier, the ξ dependence is expected to 
be small. As found in the Abelian–Higgs model with an additional 
scalar [18], however, such an expectation is not always correct. It is 
concluded that the ξ dependence can be pronounced even when 
the tree-potential barrier exists. Nevertheless, this point is often 
overlooked in previous studies on the EWPT in the SM with a real 
singlet scalar.

Another issue is the occurrence of IR divergences in the ef-
fective potential in the Rξ gauge with ξ = 0. For example, if the 
Higgs boson mass is renormalized using the one-loop effective po-
tential in such a way that the loop corrections do not modify the 
tree-level mass relations,1 the second derivative of the one-loop 
effective potential is ill-defined due to the IR divergences coming 
from the Nambu–Goldstone (NG) boson loops. One of the prescrip-
tions for the problem is to resum higher-order corrections to the 

1 This is called “on-shell” renormalization in Ref. [8]. Since it is not the genuine 
on-shell renormalization, we refer to it as “on-shell-like” renormalization in the cur-
rent paper.
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NG masses [19,20]. One can show that the NG contributions have 
little effect on the Higgs mass once they are resummed. Nonethe-
less, it would be desirable to quantify their numerical impact on 
vC /TC explicitly.

In this paper, we revisit EWPT in the SM with a singlet scalar, 
focusing on the aforementioned two issues as well as the scheme 
dependence. We first clarify the numerical importance of the ther-
mal gauge boson loops on vC /TC by subtracting them off from the 
finite-temperature effective potential in the Landau gauge ξ = 0. 
Even though this simple method cannot precisely quantify the ξ
dependence, it tells how important the thermal gauge loops can be 
in order to achieve a strong first-order EWPT, especially vC /TC � 1. 
We regard this as a simple criterion whether a further investiga-
tion of the ξ dependence is needed or not.

In addition to the numerical studies of vC /TC in the on-shell 
(OS)-like scheme with the NG resummation, we also evaluate 
vC /TC utilizing the following three methods commonly adopted 
in the literature for comparison: (1) the MS scheme, (2) the 
high-temperature (HT) potential defined as the tree-level poten-
tial plus thermal masses and (3) the Patel–Ramsey–Musolf (PRM) 
scheme [16]. In the first method, the tree-level NG boson masses 
are not zero in the one-loop corrected vacuum so that the NG re-
summation mentioned above is not required. The second method 
is manifestly gauge invariant since the thermal masses do not have 
the ξ dependence. In the last one, the Nielsen–Fukuda–Kugo (NFK) 
identity [22,23] is used to obtain the gauge-invariant TC , and vC
is determined by use of the HT potential. We confine ourselves to 
O(h̄) calculations in which the thermal resummation is not per-
formed. Going beyond this order requires two-loop contributions 
as well, which is out of the scope of current investigation. Appli-
cation of the O(h̄) PRM scheme to the SM with a complex scalar 
can be found in Ref. [24]. However, devoted numerical comparisons 
between this scheme and the standard gauge-dependent ones are 
not performed. One of the goals of this study is to complement 
this part.

The paper is organized as follows. In Sec. 2, we introduce the 
model and define our notation. Renormalization schemes are given 
to fix the input parameters. In Sec. 3, we outline the EWPT in the 
model. Sec. 4 shows the results of our numerical analyses. The con-
clusion and discussions are given in Sec. 5.

2. Model

We consider a model in which an SU(2)L singlet real scalar S is 
added to the SM. The S boson can be a dark matter candidate if a 
Z2 symmetry is imposed [11]. The tree-level Higgs potential with 
the Z2 symmetry is then cast into the form:

V 0(H, S) = −μ2
H H† H + λH (H† H)2 − μ2

S

2
S2 + λS

4
S4

+ λH S

2
H† H S2. (1)

The doublet Higgs field is parametrized as

H(x) =
(

G+(x)
1√
2

[
v + h(x) + iG0(x)

] )
, (2)

where v � 246 GeV denotes the VEV, h the 125-GeV Higgs boson, 
and G0,±(x) the NG bosons.

The tadpole conditions at tree level are

Th ≡
〈
∂V 0

∂h

〉
= v

[
− μ2

H + λH v2 + λH S

2
v2

S

]
= 0,

T S ≡
〈
∂V 0

∂ S

〉
= v S

[
−μ2

S + λS v2
S + λH S

2
v2

]
= 0,

(3)
where the symbol 〈· · · 〉 means that the quantity sandwiched by 
the angled brackets is evaluated in the vacuum, and v S = 〈S〉. The 
Z2-invariant vacuum corresponds to the solution: μ2

H = λH v2 and 
v S = 0, from which the scalar boson masses are given by

m2
h = −μ2

H + 3λH v2 = 2λH v2,

m2
S = −μ2

S + λH S

2
v2.

(4)

Denoting the background fields of H and S as ϕ/
√

2 and ϕS , re-
spectively, the tree-level effective potential takes the form

V 0(ϕ,ϕS) = −μ2
H

2
ϕ2 + λH

4
ϕ4 + λH S

4
ϕ2ϕ2

S − μ2
S

2
ϕ2

S + λS

4
ϕ4

S .

(5)

To avoid an unbounded-from-below potential, one has to have 
λH > 0 and λS > 0, and additionally −2

√
λHλS < λH S if λH S < 0. 

As far as the strong first-order EWPT is concerned, λH S > 0 is nec-
essary so that the last condition is irrelevant in our study.

For μ2
S > 0, a local minimum can appear in the singlet scalar 

direction (denoted as vsym
S ) before electroweak symmetry breaking 

(EWSB). For the EW vacuum to be the global minimum after the 
EWSB, one must have

V 0(v,0) < V 0(0, vsym
S ) =⇒

λS > λH
μ4

S

μ4
H

= 2

m2
H v2

(
m2

S − λH S

2
v2

)2

≡ λmin
S . (6)

We take {v, mh, mS , λH S , λS} as the input parameter set in favor of 
the original one, {μ2

H , μ2
S , λH , λH S , λS}. At the tree level, one gets

μ2
H = m2

h

2
, μ2

S = −m2
S + λH S

2
v2, λH = m2

h

2v2
. (7)

In our numerical analyses, we take λS = λmin
S + 0.1 as adopted in 

Ref. [8].
The tadpole conditions and scalar masses at one-loop level are 

calculated using [14,25]

V CW(m̄2
i ) =

∑
i

ni
m̄4

i

4(16π2)

(
ln

m̄2
i

μ̄2
− ci

)
, (8)

which is regularized in the MS scheme, where m̄i are the back-
ground-field-dependent masses of the Higgs bosons (H1,2), the NG 
bosons (G0, G±), the weak gauge bosons (W , Z ) and the top quark 
(t) with nH1 = nH2 = nG0 = 1, nG± = 2, nW = 6, nZ = 3, nt = −12, 
c = 3/2 for the scalars and top quark while c = 5/6 for the gauge 
bosons, and μ̄ denotes the renormalization scale. Note that H1,2
are the admixtures of h and S occurring for field configurations 
other than the vacuum.

We first describe the OS-like scheme in which the tree-level 
relations are not altered by the loop corrections [26].2 To this end, 
the (finite) renormalization conditions are imposed as〈

∂(V CW + V CT)

∂ϕ

〉
= 0,

〈
∂2(V CW + V CT)

∂ϕ2

〉
= 0,〈

∂2(V CW + V CT)

∂ϕ2
S

〉
= 0, (9)

where

2 For the genuine OS scheme in the SM with the singlet scalar, see, e.g., Ref. [27]



156 C.-W. Chiang et al. / Physics Letters B 789 (2019) 154–159
V CT = −δμ2
H

2
ϕ2 − δμ2

S

2
ϕ2

S . (10)

Note that the conditions (9) also fix μ̄ in addition to δμ2
H and δμ2

S . 
As a result, the renormalized one-loop effective potential takes the 
form

V (OS)
1 (ϕ,ϕS) =

∑
i

ni
1

4(16π2)

[
m̄4

i

(
ln

m̄2
i

m2
i

− 3

2

)
+ 2m̄2

i m2
i

]
,

(11)

where m2
i = 〈m̄2

i 〉. In this scheme, the NG bosons cause the IR di-
vergence in the second condition in Eq. (9). To circumvent it, their 
contributions should be treated with a special care. In this work, 
we adopt a prescription proposed in Refs. [19,20].3 In this case, the 
resummed NG contributions take the form

V (G)
CW(ϕ) = M̄4

G0

4(16π2)

(
ln

M̄2
G0

μ̄2
− 3

2

)

+ 2 · M̄4
G±

4(16π2)

(
ln

M̄2
G±

μ̄2
− 3

2

)
, (12)

where M̄2
G0,± = m̄2

G0,± +�̄G with �̄G being the one-loop self-energy 
of the NG bosons with vanishing external momenta,

�̄G = 1

16π2

[
3λHm̄2

H1

(
ln

m̄2
H1

μ̄2
− 1

)
+ 1

2
λH Sm̄2

H2

(
ln

m̄2
H2

μ̄2
− 1

)

+ 3g2
2

2
m̄2

W

(
ln

m̄2
W

μ̄2
− 1

3

)
+ 3(g2

2 + g2
1)

4
m̄2

Z

(
ln

m̄2
Z

μ̄2
− 1

3

)

− 6y2
t m̄2

t

(
ln

m̄2
t

μ̄2
− 1

)]
, (13)

where g2,1 denote the SU(2)L and U(1)Y gauge couplings, respec-
tively, and yt the top Yukawa coupling. The leading contribution 
comes from the top quark loop. With this resummation prescrip-
tion, the second derivative of Eq. (12) evaluated in the vacuum is 
made finite, mG0,± = 0.

Now we move on to discuss the one-loop corrected tadpole 
conditions and Higgs masses in the MS scheme. In this case, we 
impose

Th =
〈
∂(V 0 + V CW)

∂ϕ

〉
= (−μ2

H + λH v2)v +
〈
∂V CW

∂ϕ

〉
= 0, (14)

m2
h =

〈
∂2(V 0 + V CW)

∂ϕ2

〉
= 2λH v2 +

〈
∂2 V CW

∂ϕ2

〉
− 1

v

〈
∂V CW

∂ϕ

〉
,

(15)

m2
S =

〈
∂2(V 0 + V CW)

∂ϕ2
S

〉
= −μ2

S + λH S

2
v2 +

〈
∂2 V CW

∂ϕ2
S

〉
. (16)

In Eq. (15), μ2
H is eliminated by use of Eq. (14). In contrast to 

the OS-like scheme, mh does not suffer from the IR divergence 
since mG0,± 
= 0 in the vacuum. We determine the parameters 
{μ2

H , μ2
S , λH } by solving the above three conditions numerically. 

In our numerical analyses, μ̄ is varied from mt/2 to 2mt with 
mt = 173.2 GeV in order to quantify the scale uncertainty.

3 The IR divergence issue can also be cured by using the on-shell Higgs mass 
rather than the zero-momentum defined Higgs mass [21].

3. 

hav
The

vC

TC

wh
fluc
cur
one
eva
rev

pot

V T
1

I B,

Sin
per
thi
the
wit
me
fou

exp
ten
(ϕ,

tra
EW
by 

V e

wh
lim
fro
the
tio

so 

∂V

wh
and

V e

C(ϕ

Sin
is c
∂V

∂ξ

The
poi
Electroweak phase transition

For the EWBG scenario to work, the baryon-changing processes 
e to be sufficiently suppressed inside the expanding bubbles. 
 criterion for it is given by

> ζsph(TC ), (17)

ere ζsph(TC ) depends on the sphaleron configuration [28], the 
tuation determinants about it, and so on [16,29–32]. In the 
rent model, it is found that ζsph � 1.1–1.2 [31], where the 
-loop effective potential with thermal resummation is used to 
luate the sphaleron energy. It is thus ξ -dependent and must be 
ised in a gauge-invariant manner. We defer it to a future study.
To investigate the EWPT, we use the finite-T one-loop effective 
ential given by [33]

(ϕ,ϕS ; T ) =
∑

i

ni
T 4

2π2
I B,F

(
m̄2

i

T 2

)
,

F (a2) =
∞∫

0

dx x2 ln
(

1 ∓ e−
√

x2+a2
)
. (18)

ce the perturbative expansion would break down at high tem-
atures, the dominant thermal pieces must be resummed. In 
s work, we adopt a prescription such that m̄2

i appearing in 
 thermal function of I B (m̄2

i /T 2) are replaced with m̄2
i + �i(T )

h �i(T ) being the thermal masses (for a refined resummation 
thod, see, e.g., Ref. [9]). The explicit expressions of �i(T ) can be 
nd in Refs. [7,34]
As pointed out in Ref. [35], two-step phase transitions have 
anded EWBG possibilities in models with singlet scalar ex-
sions. In our case, the primary phase transition occurs from 
 ϕS ) = (0, 0) to (ϕ, ϕS) = (0, vsym

S ), followed by the secondary 
nsition to (ϕ, ϕS ) = (v, vbr

S ). The critical temperature, TC , of the 
PT in standard gauge-dependent EWPT calculations is defined 
the degenerate minima condition

ff(0, vsym
SC ; TC ) = V eff(vC , vbr

SC ; TC ), (19)

ere vC = limT ↑TC v(T ), vbr
SC = limT ↑TC v S(T ), vsym

SC =
T ↓TC v S(T ) with the uparrow (downarrow) being the limit taken 

m below (above) TC . We will determine TC and the VEVs using 
 effective potential at T = 0 with the renormalization condi-

ns explained above and Eq. (18) with the thermal resummation.
In the PRM scheme [16], on the other hand, TC is determined 
as to satisfy the NFK identity expressed by

eff(ϕ)

∂ξ
= −C(ϕ, ξ)

∂V eff(ϕ)

∂ϕ
, (20)

ere C(ϕ, ξ) is some functional. In the perturbative analysis, V eff

 C(ϕ, ξ) should be expanded in powers of h̄:

ff(ϕ) = V 0(ϕ) + h̄V 1(ϕ) + h̄2 V 2(ϕ) + · · · ,

, ξ) = c0 + h̄c1(ϕ, ξ) + h̄2c2(ϕ, ξ) + · · · .
(21)

ce c0 = 0 due to the ξ independence of V 0, the identity to O(h̄)

ast into the form

1 = −c1
∂V 0

∂ϕ
. (22)

refore, the ξ dependence of V 1 disappears at the stationary 
nts of V 0 rather than those of V 1.
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Fig. 1. Impacts of the thermal gauge bosons (dot-dashed curves) and NG bosons (dashed curves) on TC (left) and vC /TC (right) as a function of λH S . The solid curves include 
both contributions. Here the OS-like scheme is used.

Fig. 2. Comparisons among the various calculation methods: PRM (red-solid), OS-like scheme with the NG resummation (blue-solid), MS (green-dash), and HT (black-dot), 
respectively. For PRM and MS, μ̄ is varied from mt/2 to 2mt .
In the aforementioned two-step phase transition case, TC to 
O(h̄) in the PRM is determined by

V 0(0, vsym
S,tree) + V CW(0, vsym

S,tree) + V T
1 (0, vsym

S,tree; TC )

= V 0(vtree,0) + V CW(vtree,0) + V T
1 (vtree,0; TC ), (23)

where vtree = 246 GeV and vsym
S,tree is the minimum of V 0(0, ϕS ). 

Unlike the standard gauge-dependent calculations, the field values 
are fixed by the tree-level stationary points. As a result, TC in this 
scheme becomes lower than those in the gauge-dependent calcu-
lations, determined by Eq. (19). It is shown in Ref. [24] that the 
μ̄ dependence in V CW can affect TC significantly. This is due to 
the fact that in the ordinary gauge-dependent methods at one-loop 
level, the one-loop tadpole conditions, which are μ̄ dependent, are 
used in determining TC . As a result, the μ̄ dependences of V CW
are partially cancelled. In the PRM method, on the other hand, 
the tree-level tadpole conditions are used even at the one-loop 
order in order to satisfy the NFK identity, yielding the larger μ̄
dependences. In Ref. [24], using renormalization group equations, 
(V 0 + V CW) is made μ̄-independent up to higher-order corrections. 
However, we still have degrees of freedom to choose an input scale 
for the running parameters to which TC is vulnerable. The funda-
mental solution for it may require higher order corrections that are 
missing here. In the current analysis, we do not elaborate a more 
refined calculation and just vary μ̄ from mt/2 to 2mt in order to 
estimate the scale uncertainty of TC as in the MS scheme.

In the PRM scheme, the VEVs at TC are determined by the min-
ima of the HT potential defined by

V HT(ϕ,ϕS) = V 0(ϕ,ϕS) + 1

2
�H (T )ϕ2 + 1

2
�S(T )ϕ2

S , (24)

where �H (T ) and �S(T ) are the thermal masses of H and S , 
respectively [7]. The HT potential is manifestly ξ independent, 
thanks to the ξ independence of the thermal masses as mentioned 
in Introduction. Because of this nice property, it is possible to ob-
tain the gauge-invariant TC and VEVs by solely using the potential. 
Application of the HT scheme to the singlet-extended SMs can be 
found in Ref. [10].
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4. Results

Here we conduct the numerical analysis. The free parameters 
in this model are mS , λH S and λS . In the current study, we take 
mS = mh/2 that is consistent with the DM phenomenology4 and 
λS = λmin

S + 0.1, and thus λH S is the only parameter we vary. We 
focus mostly on the parameter space where vC /TC � 1 realized by 
the two-step EWPT associate with the tree-level potential barrier. 
In this case, the range of λH S is also more or less fixed.

In Fig. 1, we study the EWPT in two approximations. One is 
the calculation without including the thermal gauge boson loops, 
denoted as “gaugeless” and depicted by the dot-dashed curves,5

and the other is the one without the NG boson contributions, de-
noted as “w/o NG” and depicted by the dashed curves. The solid 
curves labeled by “full” includes both of them. Here the OS-like 
renormalization scheme is adopted. The left and right plots show 
TC and vC /TC as functions of λH S , respectively. One can see that 
the thermal gauge boson loops have a (12–17)% effect on TC and 
(12–22)% on vC /TC . What is remarkable here is that the impor-
tance of the gauge boson loops persists even if the tree-potential 
barrier exists. As mentioned in Introduction, the figures are not 
necessarily equivalent to the ξ dependence itself, but it is expected 
that the larger percentages naively correspond to a greater possi-
bility of the ξ artifact. Formally, the ξ dependence comes from 
the next order in the perturbative expansion so that its magnitude 
is not so large as long as ξ is assumed to be an O(1) parame-
ter, which may not be justified a priori though. As discussed in 
Ref. [36], however, even if the ξ dependence on TC is a few %, it 
cannot guarantee that the bubble nucleation temperature or grav-
itational waves generated during the first-order phase transitions 
also have similar ξ dependences. Actually, the gravitational wave 
spectrum in a U(1)B−L model discussed in Ref. [36] can change by 
one order magnitude when varying ξ from 0 to 5. Having this in 
mind, the results shown in Fig. 1 motivate us to conduct further 
investigations in the current model as well. The quantification of 
the ξ dependence on the EWPT using the general Rξ gauge will be 
given elsewhere.

We also find that the NG boson effects are (0.6–2.7)% in TC
and (1.5–18)% in vC /TC , respectively. Note that the effect becomes 
more pronounced if the thermal potential barrier dominates over 
the tree-level potential barrier, which occurs when λH S � 0.21 and 
below, as shown by the bend in the dashed curve of the right 
panel. Otherwise, the effect is typically at a few % level.

Now we investigate the scheme dependence using the other 
methods: PRM, MS, and HT schemes. The numerical results are 
summarized in Fig. 2. The colors and styles of the curves are as 
follows: PRM scheme (red-solid), OS-like scheme with the NG re-
summation (blue-solid), MS scheme (green-dash), and HT scheme 
(black-dot). For the PRM and MS schemes, μ̄ is varied from mt/2
and 2mt . We find the following:

1. The OS-like and MS schemes show a nice agreement between 
each other within the scale uncertainties in the MS scheme 
which are (3.8–6.2)% in TC and (10–23)% in vC /TC , respec-
tively. Here the upper (lower) curve in TC corresponds to 
the case with μ̄ = 2mt (mt/2), and the other way around 
for vC /TC . One can find that the two results get closer if 
μ̄ = mt/2 is taken. For the commonly used choice in the litera-
ture, μ̄ = mt , on the other hand, TC (vC /TC ) in the MS scheme 

4 It is well known that the DM relic density is lower than the observed value in 
parameter space consistent with the strong first-order EWPT. For a recent study of 
DM in this model, see, e.g., Ref. [12].

5 We have confirmed that the zero temperature gauge boson loops have little 
effect on EWPT.
is larger (smaller) than that in the OS-like scheme by ∼ 1.5% 
(2.7–9.5)%. In any case, the relatively large scale uncertainties, 
especially in vC /TC in the MS scheme indicates the necessity 
of higher-order corrections.

2. The PRM scheme gives qualitatively the same behavior of TC

against λH S as in the OS-like and MS schemes; namely, TC

gets smaller as λH S increases. Here the upper (lower) curve 
in TC is for μ̄ = mt/2 (2mt), and the other way around for 
vC /TC . One can see that this scheme is subject to more scale 
uncertainties as mentioned in Sec. 3. In spite of this, one of the 
universal features of this scheme is that TC is lower than the 
gauge-dependent TC , which is the consequence of the different 
determination of TC ; i.e., the degenerate point is away from 
the minimum of the one-loop effective potential, and hence 
the degeneracy occurs at a lower T .
Because of the lower TC , vC /TC is enhanced compared to 
those of the OS-like and MS schemes except around μ̄ = mt/2, 
where vC becomes zero for λH S � 0.25 since TC in PRM gets 
larger than that in HT. Nevertheless, we conclude that there 
is no significant inconsistency between the PRM and other 
schemes within the theoretical uncertainties. In any case, a 
more refined calculation with higher-order corrections such as 
at O(h̄2) and the daisy diagrams is indispensable for a quan-
titative analysis.

3. The critical temperature TC in the HT scheme can be smaller 
than those in the OS-like and MS schemes by about
(10–30) GeV. We also find that the EWPT in the HT scheme 
is not first-order for λH S � 0.26. Moreover, even if it becomes 
first order, vC /TC is overestimated compared to the other two 
schemes, which signifies the importance of the one-loop cor-
rections.

Before closing this section, we briefly comment on the Landau 
pole issue in this scenario. In most EWBG scenarios, the region 
of vC /TC > 1 is not compatible with the absence of the Landau 
pole up to the Planck scale (∼ 1019 GeV). In the above scenario, 
in contrast, it is found that all the couplings in the model are less 
than 4π all the way to the Planck scale for λH S � 0.33 using the 
one-loop renormalization group equations.

5. Conclusion and discussions

We have revisited EWPT in the singlet-extended SM using sev-
eral calculation methods to study the scheme dependence. In the 
OS-like scheme, the NG bosons must be taken with a special care 
in order to avoid the IR divergence. Here we adopted the NG re-
summation method recently proposed in Refs. [19,20] and quanti-
fied such a resummation effect on first-order EWPT. It is found that 
the effect can get pronounced if the potential barrier is governed 
mainly by the thermal cubic loops rather than the tree-potential 
structure. If not, the effect is typically at ∼ 1% level. In addition, 
we numerically studied the impacts of the thermal gauge boson 
loops on vC /TC and found that such loops had a (12–22)% effect 
on vC /TC even when the tree-level potential barrier existed. This 
motivates us to conduct the precise quantification of the ξ depen-
dence using the general Rξ gauge in a future study.

We also found that the results in the OS-like and MS schemes 
showed a nice agreement within the scale uncertainties which are 
(3.8–6.2)% in TC and (10–23)% in vC /TC . Our numerical studies 
also clarified that TC and the corresponding VEVs against λH S in 
the gauge-invariant PRM method were qualitatively consistent with 
those in the above gauge-dependent schemes within the rather 
large theoretical uncertainties. Regardless of the gauge-dependent 
or -independent methods, we found that the scale uncertainties 
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in vC /TC were more than about 10%, suggesting that higher-order 
corrections could be potentially important.
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