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Abstract – We analyze the steric effect of electrolyte on the normal stress exerted on a wall and
the free charge density in a nanoconfinement using the modified Poisson-Boltzmann (mPB) equa-
tion. The outward normal stress exerted on the channel wall (Pnn) is calculated by solving the
mPB numerically with a constant surface potential for various equilateral polygonal channels and
compared with one-dimensional and circular channels by varying the steric factor (γ) and asym-
metry of ions (ξ). The results show that the averaged normal stress on the walls (Pnn) and the
averaged charge density in the channels (ρ) are almost independent of the channel shape, and
are the same with those of the circular channel. From the numerical observation, we infer the
universality of average electric field (En) and average electrical stress (E2

n) on the channel wall,
both of which are independent of the channel shape if the hydraulic radius is the same.

Copyright c© EPLA, 2018

Introduction. – The phenomenon of electrolyte in a
nanoconfinement has been studied for a long time before
we began to understand our interest in nanoparticles or
nanostructures in the name of nanoscience. It is found
in many examples such as reactions of catalysis coated
on porous structures, charging/discharging phenomena in
porous electrodes in batteries, and desalination of seawa-
ter based on selective ion exchange membranes [1–7]. In
these applications, an important question is how much
ion can be charged to the porous structure, or how much
force the porous structure receives from the electrolyte,
and whether the structure is indeed sustainable by the
force. This is because the force exerted on the wall and
the charge density in the nanostructure caused by the elec-
trolyte are the primary factors that can affect the effi-
ciency and durability of the system directly.

In terms of the efficiency and durability of applications,
research has been limited except for experimental verifica-
tion. However, in experiments, it is difficult to understand
the structural characteristics of an electric double layer
(EDL) systematically because it is difficult to directly ob-
serve the ion distribution in a nanostructure. Particularly,
because the theoretical understanding is primarily limited
to a one-dimensional (1D) slit, researches on the charac-
teristics of the EDL structure in various situations are
scarce.

In general, the force exerted on a channel wall and the
charge density in a porous structure can be predicted by
solving the electric field and distribution of ions in the
domain. In many cases, the conventional Gouy-Chapman
theory or the Poisson-Boltzmann (PB) equation derived
from the theory is sufficient. However, when the EDL
thickness and channel size become comparable and the
ion concentration is increased significantly owing to the
high potential, the ion-ion interaction and the finiteness of
ion size become paramount. Consequently, the real EDL
structure can be quite different from the PB model. An
electrolyte in a charged slit can induce an overcharging and
charge reversal owing to the effects of unequal ionic sizes
with respect to the concentration, ion size and valence [8].
The effective extent of the EDL overlap can also be caused
by the nontrivial interaction between the steric effect and
EDL overlap in narrow fluidic confinement [9]. This can
be explained by the modified PB (mPB) based on the
mean-field theory developed by several researchers. Fur-
ther, many researchers have recently reported their pro-
gresses on the steric effect and the correlation effect using
this model [10–12].

In many application problems, a nanoconfinement is not
simply a 1D slit or circular channel, but exhibits a complex
network structure with various shapes of its cross-section.
Theoretical studies on the steric effect of various channel
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shapes do not exist even though many have been published
for the 1D slit or circular channel with or without steric
effects [10,11,13–17]. To realize various channel shapes,
we consider a channel with equilateral polygonal shape as
the cross-section, and nine types of channels from triangle
to 72-polygon are analyzed. The results will be compared
with the results of the 1D slit and circular channel.

Herein, we first review the characteristics of the mPB
model with respect to the steric factor, and subsequently
analyze the EDL structure (i.e., osmotic pressure, ion
concentration, electric force distribution, etc.) in various
channel shapes. We found that the averaged normal stress
exerted on the wall and the averaged charge density in the
channel remain almost constant regardless of the channel
shape if the hydraulic radius is the same. Hence, we will
discuss the universality of electric field and electrical stress
on the channel wall.

Modified Poisson-Boltzmann equation and os-
motic pressure. – The effect of finite ion sizes can be
characterized via the compressibility as γ = 2a3

+c0, where
a+ is the size of the cation, and c0 is the initial bulk num-
ber density [3,18]. Therefore, γ is also known as the vol-
ume fraction of ions for the same-sized ions [10]. When
γ approaches 1, the salt-only electrolytes are completely
packed without vacancy. To consider the size difference
of the cation and anion, the anion/cation volume ratio
(asymmetry factor) is introduced as ξ = V−/V+ = a3

−/a3
+,

where a− is the size of the anion [15,18]. We assume that
the anion is smaller than the cation (0 < ξ ≤ 1). From the
equilibrium condition together with the chemical potential
in the mean-field theory, one can derive the dimensionless
number density of the cation (c1) and anion (c2) [18],

c1 ≡ c+

c0
=

N+

N0
=

2
γ

exp(−u)

exp(−u) + (ξ + η)
[

ξ exp(u)+η
ξ+η

] 1
ξ

, (1)

c2 ≡ c−
c0

=
N−
N0

=
2
γ

exp(u)
[

ξ exp(u)+η
ξ+η

] 1
ξ−1

exp(−u) + (ξ + η)
[

ξ exp(u)+η
ξ+η

] 1
ξ

, (2)

where the porosity in the bulk is defined by η = 2/γ−1−ξ
and the dimensionless potential (u) is expressed by

u =
eψ

kBT
=

ψ

Vth
.

Here, e is the electron charge, kB is the Boltzmann con-
stant and T is the absolute temperature of the system.
The thermal voltage (Vth) is approximately 25.85mV for
T = 300K. The dimensionless ion concentrations, c1 and
c2, are dependent on only the electrical potential and the
size of ions (γ and ξ). Equations (1) and (2) are reduced
to the Gouy-Chapman theory for γ → 0. Figure 1(a) rep-
resents the potential dependence on c1 and c2 for γ = 0.2,
0.5 and 1.0 at ξ = 0.5. The saturated concentrations are
given as 2/γ and 2/γξ for c1 and c2, respectively [18].

(a)

(b)

(c)

Fig. 1: (Color online) Potential dependence of (a) the ion con-
centrations at γ = 0.2, 0.5 and 1.0 and ξ = 0.5 and (b) the
osmotic pressure at γ = 0.002, 0.02 and 0.2 with ξ = 0.5.
(c) γ-dependence of πb for ξ = 0.1, 0.5 and 1.

Further, the conventional Gouy-Chapman theory (dotted
line in fig. 1(a)), which corresponds to γ → 0, deviates
significantly from the modified PB model even at low u.

The electric potential is governed by the Poisson equa-
tion and its dimensionless version is expressed by

−ε2∇2u =
1
2
(c1 − c2) (3)

with the Debye length (λD =
√

εkBT/2z2e2c0) and the
relative EDL thickness (ε = λD/H). Here, H is the char-
acteristic length scale of the system. Combining eqs. (1)
and (2) with eq. (3) yields the mPB equation [15],

−ε2∇2u =
1
γ

exp(−u) − exp(u)
[

ξ exp(u)+η
ξ+η

] 1
ξ−1

exp(−u) + (ξ + η)
[

ξ exp(u)+η
ξ+η

] 1
ξ

. (4)
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Equation (4) converges to the mPB equation for the sym-
metric electrolytes [10,18,19] at ξ = 1.

We can relate the osmotic pressure and the electric po-
tential from the Navier-Stokes equations (NS) [15,20],

∇π̂ = ρf Ê. (5)

Using eqs. (4) and (5), the osmotic pressure can be de-
rived as

π =
π̂

2c0kBT

=
1
γ

[
ln

(
exp(−u) + (ξ + η)

[
ξ exp(u) + η

ξ + η

] 1
ξ
)

+ ln
γ

2

]

+ πb, (6)

where πb is the bulk pressure at u = 0. Here, the charac-
teristic pressure πc is set as 2c0kBT . The other method of
deriving the osmotic pressure is to use the Helmholtz free
energy, which is obtained from the mean-field theory [20].
The obtained osmotic pressure is expressed in the dimen-
sionless form as

π =
1
γ

[
ln

(
exp(−u) + (ξ + η)

[
ξ exp(u) + η

ξ + η

] 1
ξ
)

+
(

1
ξ
− 1

)
ln

(
ξ + η

)
− 1

ξ
ln η

]
. (7)

Figure 1(b) shows the potential dependence on the osmotic
pressure at ξ = 0.5 and γ = 0.2, 0.02 and 0.002. The dot-
ted line represents the conventional PB equation, i.e., for
ξ = 1 and γ → 0, which is represented by πPB = cosh(u).
The osmotic pressure increases exponentially with |u| as
|u| → ∞. The osmotic pressure with steric effects devi-
ates from the conventional PB prediction in a large extent
even at a small γ at high |u|(> 10). And, for γ = 0.2, the
deviation starts even in low |u|(< 5). A transition regime
appears in slope, where π deviates from the conventional
PB prediction. This transition regime implies that the
ions are about to saturate.

The bulk pressure is obtained from eqs. (6) and (7),

πb =
1
γ

[
− ln

γ

2
+

(
1
ξ
− 1

)
ln

(
ξ + η

)
− 1

ξ
ln η

]
. (8)

As shown, πb is monotonically increasing with respect to γ,
and is similar to the Carnahan-Starling equation of state
for a single species. Further, it converges to 1 as γ → 0
(fig. 1(c)); this corresponds to the van ’t Hoff law in low
concentration limits (π̂ = cRT ). The bulk pressure in-
creases significantly as γ → 1, where the ions are tightly
packed without solvent. When the ions are symmetric
(ξ = 1.0), eq. (8) converges to − ln(1−γ)

γ (hollow circles in
fig. 1(c)) [15] and decreases with respect to ξ.

We now consider the normal stress exerted on the
wall. The total stress tensor without the flow field is ex-
pressed as

T = −π̂I + Te, (9)

Fig. 2: (Color online) Schematics for cross-sections of polygonal
channels and their domain definitions.

where Te is the Maxwell stress. The normal stress exerted
on the channel wall is

P̂nn = −Tnn = π̂ − εε0

2
Ê2

n. (10)

P̂nn is decreased by the electric field. The osmotic pressure
is expressed only by the potential, thus implying that the
osmotic pressure (π) is constant along the wall when the
wall potential (V0) is set on the wall. However, the electric
field is varied and it induces a nonuniform normal stress
distribution exerted on the wall.

EDL structure in various channels. – We are in-
terested in the steric effect on P̂nn for various nanocon-
finements with a constant wall potential (V0). Here, we
consider nanochannels with various cross-sectional shapes
that are equilateral polygons. The equilateral polygons
are defined with the same hydraulic radius RH , which is
defined by RH = 2A/C, where A is the cross-sectional
area of the channel and C is its perimeter. The equilat-
eral polygons circumscribe the circle of radius H as shown
in fig. 2 [16].

The dimensionless stress normal to the E-field direction,
which is scaled with 2c0kBT , is expressed as

Pnn = π − ε2

2
E2. (11)

Pnn becomes the normal force exerted on the wall at the
channel wall. Pnn is decreased by the electric stress and
its upper bound is the osmotic pressure. It is noteworthy
that Pnn is a function of u and ∇u(= −E), not only u.
Therefore, the normal stress distribution is not matched
with the potential distribution. Pnn can be calculated
numerically for various channels. The E-field is obtained
by solving eq. (4) and π is calculated from eq. (7).

Figure 3 shows the results of the numerical analysis at
ξ = 1, γ = 0.2, ε = 0.2 and V0 = 10 in various confine-
ments as a color contour. Figure 3(a) shows the contour
of E2, which has the largest value on the wall, and de-
creases exponentially as it moves away from the wall. In
a polygon, the electric field at the center of the edge is
the highest, and the weaker field moves to the vertex, and
converges to zero. This is because the electric field is van-
ishing at the vertex. Consequently, P̂nn is highest at the
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Fig. 3: (Color online) Numerically solved (a) E2, (b) c2 and (c) Pnn fields for the 1D channel, n = 3–12 and circular channel
at ε = 0.2, ξ = 1, γ = 0.2 and V0 = 10.

vertex and decreases as n increases as shown in fig. 3(c). It
is noteworthy that P̂nn is the highest at the vertex rather
than at the center of the edge. This implies that the cor-
ner portion of the nanochannels or porous media can be
structurally vulnerable. P̂nn at the vertex of the polygon
converges to that of a circular channel as n → ∞, as shown
in fig. 4(d).

The electric potential u also decreases exponentially
from the wall, but it is not completely screened, i.e., u �= 0
at r = 0. Figure 4(a) (u-profiles along h = r/H) shows
that the potential is not zero at the center (h = 0). It is
notable that the 1D channel case forms the lower bound of
the profiles and the circular channel case forms the upper
bound. This tendency is similar in the c2-profile (fig. 3(b)).
In the case of c2, however, the potential u is 10 at the
wall (h = 1) rather than decreasing exponentially from
the wall. Therefore, the area of near saturation (c2-profile
is nearly flat as u → 10) appears near the wall (see also
fig. 1(a)). This saturation layer extends not only to the
center of the edge but also to the vicinity of the vertex.
As shown in fig. 3(b), the saturation layer (red region) is
relatively thicker near the vertex owing to its geometric
characteristics, unlike the E2-distribution.

In the case of osmotic pressure (fig. 4(c)), there is no sig-
nificant difference between the polygons and only a slight
variation in the middle of the h-axis region. Because the
osmotic pressure is a function of u only, all polygons fall
off rapidly from the wall with the same value (π → 40 at
u = 10) on the wall (dropping to less than 1/10 already
near h = 0.7 for ε = 0.2). This is a large value because
the osmotic pressure on the wall increases to 40 times the
bulk pressure (assuming the actual concentration is 1mM,
it increases to O(200 kPa)). However, the actual normal
stress exerted on the wall is much less than that, because
the electric stress relieves the normal stress according to
Pnn = π − ε2

2 E2. As shown in fig. 4(d), Pnn can be 10
times larger than the bulk pressure (πb) at the wall (at a

circular channel reference, V0 = 10), which can also pro-
duce a relatively large pressure gradient. In particular, the
normal stress (Pnn) in the h-axis direction, which is the
sum of the osmotic pressure and electric stress, is constant
along the h-direction for the 1D channel, i.e., the pressure
at the wall is equal to that in the center of the channel
(black solid line in fig. 4(d)). The interpretation in the 1D
channel is discussed in detail by Rajni et al. [15]. In the
case of a triangle or a square, the normal stress (Pnn) ex-
erted on the wall (h = 1) does not differ significantly from
that in the 1D channel, and increases gradually as n in-
creases, converging to the case of a circular channel. How-
ever, this tendency is limited to viewing in the h-direction
from the center of the polygon edge. A significantly differ-
ent change occurs along the wall, which will be discussed
in the next section.

Normal stress exerted on channel wall. – Fig-
ure 5(a) shows the outward normal stress profile along
the polygonal edge (L in fig. 2). The 1D channel has a
constant value along the wall [15] and is the lower bound
(black solid line). In the case of polygons, as shown in
fig. 3, the normal stress is minimum at the center of the
edges because the electric field is strongest at the center of
the edges, and increases monotonically toward the vertex.
Pnn at the vertex has an upper bound value, corresponding
to the osmotic pressure at a given potential. The values of
Pnn at the vertex for the triangle, quadrilateral, pentagon,
and hexagon channels almost reach to the upper bound.
For higher n, Pnn at the vertex is decreasing with the in-
fluence of the neighbor edges (dashed red line connected
with hollowed circles) and converges to the Pnn in the cir-
cular channel wall (horizontal dashed black line). Pnn at
the edge center converges to the Pnn of the circular chan-
nel as n increases, as shown in fig. 4(d), and is represented
by black solid circles in fig. 5(a). As shown, Pnn exhibits
a relatively large value change along the wall, and can be
much larger than Pnn, circle near the vertex. That is, the
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(a)

(b)

(c)

(d)

Fig. 4: (Color online) Profiles of (a) u, (b) c2, (c) π and (d) Pnn

in the h-direction of 1D, polygonal and circular channels at
ξ = 1.0, ε = 0.2, V0 = 10 and γ = 0.2.

Pnn of the circular channel is not the upper bound, which
is valid only along the h-axis as in fig. 4.

A more interesting part of this result is that the perime-
ter averages of Pnn of all polygons have almost the same
values and are almost equal to the Pnn of circular chan-
nels. The average value of Pnn can be calculated by the

(a)

(b)

(c)

Fig. 5: (Color online) Normal stress exerted on the channel
wall: (a) Pnn profile in the L-direction scaled with H, and
γ-dependence on Pnn (b) at ξ = 1.0, (c) at ξ = 0.5 for V0 = 1, 5
and 10 with ε = 0.2. The dashed lines represent the corre-
sponding 1D channel cases.

following equation:

Pnn =
1
C

∮
C

Pnn dl. (12)

Figures 5(b) and (c) show the γ-dependence of the aver-
aged normal stress Pnn for ξ = 1.0 and 0.5, respectively,
which is the normal stress exerted on the wall, for all poly-
gons, 1D and circular channels when V0 = 1, 5, and 10.
As shown in fig. 5, the same is observed as the γ and V0

values change. The γ-dependence of the 1D channel is
noteworthy. The Pnn profile with respect to γ is similar
to that of the bulk pressure πb, and almost no change oc-
curs according to V0 (three profiles almost overlap) (see
also fig. 1(c)). This is because π(h = 0) is the same as
Pnn at the wall surface of the 1D channel, and it does not
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change significantly according to V0 at ε = 0.2. In the case
of the polygon at V0 = 1, it is not significantly different
from the 1D channel case because the electric field is not
strong at the wall surface. As V0 increases, the normal
stress at the wall increases significantly because the ion
concentration becomes high on the wall when γ is small.
It is interesting to note that Pnn increases rapidly in the
lower γ regime, but slowly in the higher γ regime so that
the Pnn-profile exhibits the minimum value in the middle
of γ (0 < γ < 1) at V0 = 5 and 10 for ξ = 1.0. That
is, the average value of the outward normal stress exerted
on the channel wall is not minimized when the ions are
perfectly packed, or when the ion size is negligibly small,
but somewhere in between. This is not obvious for ξ = 0.5
because πb does not increase significantly with respect to
γ (see also fig. 1(c)). This tendency of the normal stress
exerted on the channel wall can be an important physical
characteristic when designing the size of the channel in
applications using electrolytes. Most importantly, all of
these tendencies are universal irrespective of the channel
shapes except the 1D channel if RH is the same.

Averaged free charge density in various chan-
nel shapes. – The local free charge near the wall is not
neutral owing to the interaction between the ions and the
charged wall [5], which is described by the mPB [10,15,18].
The role of the averaged free charge density becomes sig-
nificant in nanoconfinement since the EDL occupies a large
fraction over the channel such as nanoporous electrodes for
energy storage applications. The nonzero averaged free
charge density can be understood as ion enrichment in
which the amount of one ion is larger than that of the other
one. In this section, we calculate the averaged charge den-
sity (ρ) over the cross-sectional area of the channels and
analyze the geometrical effect and steric effect together
with the asymmetry of ions. The averaged free charge
density can be calculated from the following equation and
the γ-dependence for V0 = 1, 5, and 10 is shown in fig. 6,

ρ =
1
A

∫
A

ρdA. (13)

Surprisingly, we can see that ρ has almost the same value
in all polygonal and circular channels irrespective of V0, ξ
and γ. In fig. 6, it is difficult to distinguish all the lines
because they are almost overlapped. Because it represents
the cross-sectional area average, we can conclude that we
can get a similar ion enrichment irrespective of the chan-
nel shape if RH is the same. Intuitively, however, it can be
seen that as the potential increases in the lower γ regime,
ρ increases steeply and can be up to several tens of times
higher than the bulk concentration. On the other hand,
if γ increases, the effect of the charge density increase is
not large. Overall, ρ shows a monotonically decreasing
tendency as γ increases. Further, when the wall poten-
tial is low (V0 = 1), as expected, the change in charge
density with respect to γ is insignificant. The most im-
portant consequence of this calculation is that the increase
in free charge density (dashed lines) in the 1D channel is

(a)

(b)

Fig. 6: (Color online) γ-dependence on ρ in 1D (dashed lines),
polygonal and circular channels at (a) ξ = 1.0 and (b) ξ = 0.5
for V0 = 1, 5 and 10 with ε = 0.2.

significantly lower than that in the polygonal channels.
This is because the perimeter length per area is consider-
ably shorter than that of the polygonal channels.

Using the divergence theorem, it can be shown that the
averaged free charge density over the cross-sectional area
of the channel is proportional to the averaged electric field
along the channel wall.∫

A

ρdA =
∫

A

ε2∇ · EdA = ε2
∮

C

En dl. (14)

Subsequently,

En =
1
C

∮
C

En dl ∼ const. (15)

That is, regardless of the shape of the polygon, the av-
eraged En along the perimeter or the electric-field influx
from the enclosed boundary is maintained almost constant
when the same V0 is imposed to the wall surface. In fact, a
similar result can be derived from the universality of Pnn,
that is almost constant regardless of the polygon shape.
From eq. (12), it can also be shown that

E2
n =

1
C

∮
C

E2
n dl ∼ const. (16)

In this case, it can be seen that the average value of E2
n, or

equivalently the averaged electrical stress, is almost con-
stant regardless of the shape of the channel, and is approx-
imated to the average value in the circular channel. Equa-
tions (15) and (16) are very interesting results showing a
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consistent trend from the low to high potential for the
steric effect of ions.

Conclusion. – We explored the steric effect of elec-
trolytes on the normal stress exerted on the wall and
the free charge density in various nanoconfinements. The
EDL structure near the channel wall was modified sig-
nificantly by the effect of finite ion size in terms of the
potential, ion concentration and osmotic pressure com-
pared with the conventional Gouy-Chapman theory. The
osmotic pressure was reduced dramatically by the ion satu-
ration (corresponding to the tightly packed layers of ions).
Consequently, the electrical stress and the normal stress
exerted on the walls were modified significantly. The out-
ward normal stress exerted on the wall and the free charge
density over the cross-sections of the channels were the
sensitive function of the steric factor, and the EDL struc-
tures of the equilateral polygonal channels exhibited the
consistent tendency of increasing and converging from that
of the 1D channel to the circular one in terms of the os-
motic pressure, and the normal stress exerted on the wall.
However, the averaged normal stress on the channel wall
and the charge density in the channels were almost inde-
pendent of the cross-section shapes of the channels. This
implies that the averaged electric field flux and the aver-
aged electrical stress are preserved irrespective of the chan-
nel shape if the hydraulic radius is the same. The universal
properties of the steric effect of electrolyte in nanoconfine-
ment will clarify our understanding on many electrohydro-
dynamic and electrochemical applications especially when
the ion size, EDL thickness and confinement are compa-
rable to one another in high concentration or high electric
potential environments.

∗ ∗ ∗

This research was supported by the National Re-
search Foundation of Korea (NRF) funded by the
Ministry of Science, ICT, Future Planning (NRF-
2017R1D1A1B05035211) and Institute for Basic Science
(IBS-R020-D1), funded by the Korean Government. This
research has also been supported by the BK21 Plus pro-
gram of Korea.

REFERENCES

[1] Chen J., Henderson W. A., Pan H., Perdue B. R.,

Cao R., Hu J. Z., Wan C., Han K. S., Mueller K. T.,

Zhang J. G., Shao Y. and Liu J., Nano Lett., 17 (2017)
3061.

[2] Cheng X. and Pinsky P. M., PLoS ONE, 10 (2015)
e0145422.

[3] Kornyshev A. A., J. Phys. Chem. B, 111 (2007)
5545.

[4] Andrews J. and Das S., RSC Adv., 5 (2015) 46873.

[5] Colla T., Girotto M., Dos Santos A. P. and
Levin Y., J. Chem. Phys., 145 (2016) 094704.

[6] Smith W. R., Mouka F. and Nezbeda I., Fluid Phase
Equilib., 407 (2016) 76.

[7] Cazade P.-A., Hartkamp R. and Coasne B., J. Phys.
Chem. C, 118 (2014) 5061.

[8] Yu J., Aguilar-Pineda G. E., Antillon A., Dong

S. H. and Lozada-Cassou M., J. Colloid Interface Sci.,
295 (2006) 124.

[9] Das S. and Chakraborty S., Phys. Rev. E, 84 (2011)
012501.

[10] Kilic M. S., Bazant M. Z. and Ajdari A., Phys. Rev.
E, 75 (2007) 021502.

[11] Kilic M. S., Bazant M. Z. and Ajdari A., Phys. Rev.
E, 75 (2007) 021503.

[12] Colla T., Lopes L. N. and dos Santos A. P., J. Chem.
Phys., 147 (2017) 014104.

[13] Lee J. A. and Kang I. S., Phys. Rev. E, 90 (2014)
032401.

[14] Moon G. J., Ahn M. M. and Kang I. S., Phys. Rev. E,
92 (2015) 063020.

[15] Rajni, Oh J. M. and Kang I. S., Phys. Rev. E, 93 (2016)
063112.

[16] Lee J. A. and Kang I. S., Phys. Rev. E, 94 (2016)
043105.

[17] Bandopadhyay A., Goswami P. and Chakraborty S.,
J. Chem. Phys., 139 (2013) 224503.

[18] Han Y., Huang S. and Yan T., J. Phys.: Condens.
Matter., 26 (2014) 284103.

[19] Borukhov I., Andelman D. and Orland H., Phys.
Rev. Lett., 79 (1997) 435.

[20] Hua C. K., Kang I. S., Kang K. H. and Stone H. A.,
Phys. Rev. E, 81 (2010) 036314.

14004-p7


