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Optimal tuning of a Brownian information engine operating in a nonequilibrium steady state
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A Brownian information engine can induce directed motion of a Brownian particle in a single heat bath at
constant temperature by extracting work from the information about the microscopic state of the particle, and
serves as a model for artificial and biological submicron scale engines. Much of the experimental studies to
date are limited to the realization of an information engine where the initial state of the system is in thermal
equilibrium; however, most of the biological and artificial motors operate far from equilibrium. Here, we realize
a cyclic information engine operating in a nonequilibrium steady state consisting of a Brownian particle in an
optical trap and investigate the optimal operating conditions for maximum work, power, and efficiency. The
performance of our information engine depends on the cycle period τ and the distance xf that the trap center is
shifted with respect to the reference distance xm. We found that the extracted work increases with increasing τ

and is maximum when τ reaches infinity and xf = 2xm, while the extracted power is maximum at finite τ for
xf � xm and when τ approaches zero for xf < xm. By measuring the steady-state information, we have also
measured the efficiency at maximum power.

DOI: 10.1103/PhysRevE.98.052119

I. INTRODUCTION

The idea of extracting work from a single heat bath dates
back to thought experiments such as Maxwell’s demon [1]
and Szilard’s engine [2]. In these experiments the extraction
of work from a single heat bath decreases the entropy of the
system, which supposedly violates the second law of thermo-
dynamics. This paradox was resolved apparently by elucidat-
ing the link between information acquired by the demon and
thermodynamic entropy [3–5]. However, the quantitative re-
lation between information and thermodynamics was derived
by Sagawa and Ueda by introducing the generalized second
law of thermodynamics [6–8], which shows that the decrease
in thermodynamic entropy is balanced by the amount of in-
formation gained by the measurement. Moreover, by utilizing
the information obtained by the measurements, we can extract
work that cannot exceed the sum of the free energy difference
and the available information. Various theoretical models for
an information engine the initial state of which is in thermal
equilibrium have been investigated for classical [9–11] and
quantum [6,12–14] systems, and are validated by recent ex-
periments on Brownian [15–19] and electronic systems [20–
23]. For example, Koski et al. [20] realized a Szilard engine
by performing feedback control on a single electron box and
measured the average extracted work per cycle to be ∼0.75
times Landauer’s limit [4]. Recently, Paneru et al. realized
a lossless Brownian information engine that converts nearly
all available information into work extraction via an error-
free measurement and feedback control, thereby achieving
the equality of the generalized second law [17]. Apart from
these single temperature bath feedback driven information
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engines, many non-feedback-driven stochastic Brownian heat
engines operating between two heat baths have also been stud-
ied recently [24–27]. The experimental realization of these
submicron scale engines has improved our understanding of
stochastic and information thermodynamics significantly.

The above mentioned studies where the initial state of the
system is in thermal equilibrium are still not sufficient to
explain the thermodynamics of many biological motors [28]
that operate with a finite cycle period where the initial state
of the system may not be in thermal equilibrium. To this end,
many theoretical works on an information engine operating
with a finite cycle period and arbitrary initial state have
been reported [29–35]. However, the parametric study of a
Brownian information engine operating in a nonequilibrium
steady state has been done rarely because of the difficulty
in finding the steady-state probability distribution, especially
for the case of asymmetric feedback for which the probability
distribution function for a finite cycle period is non-Gaussian
[35]. Here, we report on the experimental realization of such
a cyclic information engine operating in a nonequilibrium
steady state where measurement and subsequent feedback
control are repeated with a finite cycle time in order to find the
optimal condition for maximum work, power, and efficiency.
Apart from maximum efficiency, we are interested in measur-
ing the efficiency at maximum power. The determination of
efficiency at maximum power has been studied extensively for
stochastic two temperature bath heat engines [24,25,36,37];
however, no experimental studies have been done so far in this
direction for a single temperature bath Brownian information
engine.

Our Brownian information engine consists of a colloidal
particle trapped in a harmonic potential generated by op-
tical tweezers and subjected to periodic feedback control.
Each engine cycle consists of three processes: acquiring
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FIG. 1. Illustration of the Nth feedback cycle. A particle is trapped in a harmonic potential generated by an optical trap. We set a line at
xm and measure the particle position at tN . (a) If the particle is to the left of xm, we do nothing. (b) If the particle is to the right of xm, we
instantaneously shift the potential center to xf . After that, the particle relaxes for time τ and another cycle is repeated. By shifting the potential
center, the engine extracts work equal to the change in potential energy �V.

information about the position of the particle by perform-
ing a high precision measurement of the particle position,
ultrafast modulation of the trap center, and relaxation of the
particle for time τ . Repeating this process for a large number
of measurement-feedback-relaxation cycles, the engine can
induce one-way transport of the particle, thereby extracting
work from the random thermal fluctuations of the surrounding
heat bath. We found the optimal operating condition of the
engine in a steady state for maximum work and power. The
extracted work is maximized when τ → ∞, while, depending
on the feedback control parameters, the extracted power is
maximum either at finite τ or in the limit τ → 0. By mea-
suring the information in a steady state, we also measured the
efficiency of this engine and, for the first time, found the opti-
mal conditions for maximum efficiency at maximum power.

II. RESULTS

We consider one dimensional motion of a Brownian par-
ticle in a heat bath of temperature T = (kBβ )−1. As shown
in Fig. 1, the particle is trapped in a harmonic potential
V (xB,X(t )) = (k/2)[xB − X(t )]2 ≡ 1/2kx2, where xB is the
position of the particle, X(t) denotes the time-dependent po-
tential center, k is the trap stiffness, and x ≡ xB − X(t ) is the
relative position of the particle with respective to the potential
center. Neglecting the inertial force, the dynamics of the parti-
cle during the relaxation can be described by the overdamped
Langevin equation [38,39] with the characteristic relaxation
time τR = γ /k, where γ is the dissipation coefficient.

The information engine in this experiment is designed
to measure the particle position and modulate the potential
center depending on the measurement outcome. Each engine
cycle consists of a nearly error-free measurement of the
particle position that is followed by instantaneous feedback
control and relaxation (see Fig. 1). We set a reference line at
xm and measure the particle position at t = 0 and determine
which side of the reference line the particle is located at. If
the particle is found on the left of xm, we do nothing, whereas,
if the particle is found on the right of xm, the potential center
is instantaneously shifted (keeping the stiffness constant) to
xf . By shifting the potential center, the work performed on

the system W is equal to the change in potential energy �V.
After each feedback operation, the particle evolves in time
with a fixed trap center until the next cycle begins. During
this relaxation part, the particle exchanges heat with the heat
bath without work extraction. Therefore, each engine cycle
is characterized by three parameters: the setting distance xm,
the potential center moving distance xf , and the time period
τ for relaxation. Note that the measurement and the feedback
control are ideally instantaneous, and the cycle period is ∼τ .
In this paper, we fix xm and vary xf for different τ in order
to find an optimal choice of the parameter values under which
the average extracted work or power is maximum.

For the overdamped system, the kinetic energy of the
particle can be neglected. According to Ref. [40], the incre-
mental change in potential energy can be converted to work
and heat within the switching time. In this experiment, we
use an acoustic optical deflector (AOD) to shift the potential
center. The switching time for the AOD is about 20 μs.
This time is very short in comparison to the characteristic
relaxation time τR = γ /k ∼ 3 ms, but sufficiently larger than
the momentum relaxation time τp = m/γ ∼ 0.2 μs for the
current setup. Hence, in this very short time scale of the
overdamped limit, the position of the particle cannot be far
from its previous position [41], so we can neglect the heat
production during the feedback process. The extracted work
−W (x; tN ) for the Nth cycle when the particle is measured
at the relative position x is then given by −W (x; tN ) =
V (xB,X(tN )) − V (xB,X(t+N )) = 1

2kx2 − 1
2k(x − xf )2 when

x � xm, and −W (x; tN ) = 0 otherwise (x < xm). Here, tN =
Nτ is the time for the Nth measurement, and t+N stands for the
time right after the feedback.

If the process is repeated periodically where a large number
of feedback cycles is allowed, the system goes to a steady
state. Then, the average extracted work per cycle in the steady
state is given by

〈−W 〉ss = −
∫ ∞

xm

W (x; tN )pss(x)dx

= 1

2
k

∫ ∞

xm

(
2xxf − x2

f

)
pss(x)dx, (1)
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where pss(x) is the steady-state probability distribution of
the particle position at the measurement moments and 〈· · ·〉ss

denotes the steady-state ensemble average. The integration in
Eq. (1) begins at xm because we can extract work only when
x � xm. The probability of finding the particle on the right of
xm is given by pR = ∫ ∞

xm
pss(x)dx. Then, the expression for

〈−W 〉ss takes the following form:

〈−W 〉ss = 1
2k

(
2〈x〉ssxf − x2

f

)
pR, (2)

where 〈x〉ss = 1
pR

∫ ∞
xm

xpss(x)dx is the conditional mean po-
sition of the particle given that x � xm.In the limit τ →
∞, the system relaxes to the equilibrium state irrespec-
tive of the measurement and feedback control. As a re-
sult, pss (x) follows the equilibrium Boltzmann distribution
pss(x) = (2πσ 2)−1/2 exp(−x2/2σ 2), with a variance σ 2 =
(βk)−1. Using this pss(x), we obtain an expression for 〈−W 〉ss

in the limit τ → ∞ as

〈−W 〉ss = kxf

[
1√

2πβk
exp

(
−1

2
βkx2

m

)

− xf

4
erfc

(√
βk

2
xm

)]
. (3)

A. Experimental setup

The details of the experimental setup are described in our
recently published work [17] and in Fig. 2. Briefly, a laser
with a 1064-nm wavelength is used for trapping the particle.
The laser is fed to an AOD (Isomet, LS110A-XY) via an
isolator and a beam expander. The AOD is controlled via
an analog voltage controlled rf synthesizer driver (Isomet,
D331-BS). The AOD is properly mounted at the back focal
plane of the objective lens so that k is essentially constant
while shifting the potential center. A second laser with a
980-nm wavelength is used for tracking the particle position.
A quadrant photodiode (QPD) (Hamamatsu, S5980) is used to
detect the particle position. The electrical signal from the QPD
is preamplified by a signal amplifier (On-Trak Photonics Inc.,
OT-301) and sampled at every τ with a field-programmable
gate array (FPGA) data acquisition card. Our system is ca-
pable of measuring the particle position with a high spatial
accuracy of 1 nm [17]. The sample cell consists of a highly
diluted solution of 2.0-μm-diameter polystyrene particles sus-
pended in deionized water. All experiments were carried out
at 293 ± 0.1 K. The parameters of the trap were calibrated
by fitting the probability distribution of the particle position
in a thermal equilibrium without a feedback process to the
Boltzmann distribution P (x) = (2πσ 2)−1/2 exp(−x2/2σ 2),
and we obtain the standard deviation σ = 25 nm. The trap
stiffness was then obtained by using the relation k = kBT /σ 2

and was found to be 6.47 pN/μm [17,42]. The characteristic
relaxation time for the current setup is equal τR = γ /k =
3ms. In comparison to the particle position distribution with
σ = 25 nm, the measurement error of 1 nm is negligible.
Hence, we assume our system is capable of performing nearly
error-free measurements.

FIG. 2. Schematics of the optical tweezers setup with feedback
control system. The FPGA board (connected inside the personal
computer, PC) generates a bias voltage that corresponds to the initial
position of the trapping laser center. This voltage is applied to the
AOD and a highly focused laser beam (optical trap) is created at the
sample plane of the microscope. A polystyrene bead is trapped by
this laser beam. The QPD, mounted at the back focal plane of the
condenser, performs a nearly error-free measurement of the particle
position with the help of the tracking laser beam (of very low laser
power). The measurement outcome is sent to the FPGA board. The
FPGA generates the updated voltage that corresponds to the shift
of the trap (trapping laser) center. This voltage is sent to the AOD
and the trap center is updated. M1, M2: mirror. L1, L2: lens. DM:
dichroic mirror. PBS: polarizing beam splitter. F1, F2: filter. λ/2:
half waveplate.

B. Feedback control design

The FPGA board generates the initial bias voltage that
corresponds to the initial position of the potential center (the
trapping laser beam center). This bias voltage is applied to
the AOD via an rf synthesizer, thereby creating an optical
trap at the sample plane of the microscope. Our Brownian
information engine consists of a polystyrene particle that
is trapped by the laser ∼20 μm above the bottom of the
sample cell. The information engine operates by measuring
the position of the Brownian particle with respect to the trap
center using the QPD. If the particle is found on the left of xm,
nothing is changed and another measurement is repeated after
time τ . If the particle is found on the right of xm, the FPGA
board generates an updated bias voltage that corresponds to
the shift of the potential center by xf . The decision whether to
update the bias voltage and shift the potential center is taken in
20 μs. After shifting the potential center, we again wait for
time τ , during which the particle relaxes in the updated
potential center, and another engine cycle is repeated. The
number of feedback cycles is limited by the working area of
the QPD and the linear scan range of the AOD up to which
the trap stiffness remains constant, which is about 0.5 μm for
our current setup.

In our recent paper, the optimal value of xm for maximum
work extraction was found to be xm ∼ 0.6σ [17]. Hence, in
this paper we fix xm ∼ 0.6σ and vary xf and τ in order
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FIG. 3. Steady-state probability distribution of the particle posi-
tion for different τ with xm = 16 nm and xf = 32 nm. The red solid
squares, magenta open circles, and blue solid circles correspond to
τ = 0.2, 2.0, and 20.0 ms, respectively. The distribution measured
for τ = 20 ms follows the equilibrium distribution obtained without
feedback control (see black open squares). The solid curves represent
the analytical results obtained by using Eq. (A8) in the Appendix.
The dashed vertical line corresponds to xm = 16 nm.

to find the optimal condition for maximum work and power
extraction. Figure 3 shows the experimentally measured
steady-state probability distribution pss(x) of the particle
position for different τ with xm = 16 nm (xm ∼ 0.6σ ) and
xf = 32 nm. For small τ , pss(x) is a highly asymmetric
function which spreads out to the right of xm on increasing
τ and matches with the equilibrium distribution for τ >∼ 5τR .
Note that only the points on the right of xm contribute to
the extracted work. Furthermore, the experimentally measured
pss(x) fits well with the solid curves that were obtained by
plotting the analytical results in Eq. (A8) presented in the
Appendix that were derived by the method used in Ref. [35].

The experimentally measured average extracted work per
engine cycle in the steady state 〈−βW 〉 as a function of
xf for seven different τ with xm fixed at 16 nm is shown
in Fig. 4. For xf > 0, 〈−βW 〉 increases with increasing τ

and saturates when the system relaxes fully, corresponding to
τ >∼ 5τR. The global maximum of 〈−βW 〉 is obtained when
xf = 2xm and τ >∼ 5τR. From Ref. [35] we note that, given
the particle position x > xm, the extracted work is maximum
if the particle is shifted to the center of the potential (in the
relative frame of reference). Thus, xf should be taken as
the conditional mean position of the particle 〈x〉ss, which is
∼1.2σ when xm ∼ 0.6σ . This is the reason why the global
maximum of 〈−βW 〉 is at xf = 2xm. For τ � τR , the optimal
value of xf for the maximum 〈−βW 〉 decreases and goes to
zero as τ → 0. The solid curves obtained by plotting Eq. (A9)
in the Appendix fit well with the experimentally measured
〈−βW 〉 and also fit to the theoretical curve (yellow solid
curve) in Eq. (3). It is worth mentioning that in comparison to
the work extraction by always moving the trap center in one
direction (without feedback), where the extracted work −βW

is not always positive [43], our feedback controlled informa-
tion engine is capable of extracting positive work for all cycles
(see the inset of Fig. 4). Hence, the feedback control enhances
the magnitude of the average work extraction significantly.

Figures 5(a) and 5(b) show the plot of the experimentally
measured average extracted power 〈βP 〉 = 〈−βW 〉/τ as a

FIG. 4. τ Average extracted work per engine cycle as a func-
tion of xf for seven different τ with xm fixed at 16 nm. The
black solid squares, red open squares, green solid circles, blue
open circles, cyan solid triangles, magenta open triangles, and dark
yellow solid diamonds correspond to the average work values for
τ = 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, and 20.0 ms, respectively. The solid
curves are plots of Eq. (A9) in the Appendix. The topmost yellow
solid curve is the plot of Eq. (3). Inset: Histogram of the extracted
work, −βW = β[V (x ) − V (x − xf )] for xm = 16 nm, τ = 0.2 ms,
and xf = 2xm.

function of τ and xf , respectively, when xm is fixed at 16
nm. We found that the global maximum of 〈βP 〉 is obtained
when τ 	 τR and xf 	 xm. Our finding is in agreement with
the recent theoretically realized Brownian information engine
[35], which shows that the extracted power is maximum when
τ → 0 and xf → 0. However, for xf � xm, 〈βP 〉 is found
to be maximum at finite τ . The solid curves are the plots of
〈−βW 〉ss/τ using Eq. (A9) in the Appendix and fit well with
the experimentally measured power.

Another quantity of interest is the efficiency of the Brown-
ian information engine in the steady state, which is defined
as η = 〈−βW 〉ss/〈I 〉, where 〈I 〉 is the mean information
acquired through the measurement [32]. Considering there is
negligible error in the estimation of the particle position in
this experiment, 〈I 〉 is given by Shannon information [44]
(see also Ref. [17]). In the current feedback scheme, each
engine cycle has two discrete measurement outcomes: with
probability pR the particle is found on the right of xm and
with probability 1 − pR the particle is found on the left of
xm. Thus, the acquired information is simply given by 〈I 〉 =
−pR ln pR − (1 − pR ) ln(1 − pR ). Figure 6 shows the plot
of the engine’s efficiency measured as a function of xf for
different τ . We found that, for a given xf , efficiency increases
with increasing τ . The maximum efficiency of ∼35% was
obtained when xf = 2xm and τ >∼ 5τR. Our experimentally
measured efficiency fits well with the solid curves obtained
by using Eq. (A11) in the Appendix. The nearly error-free
position measurement and instantaneous shift of the potential
center allow us to extract the maximum amount of informa-
tion. However, some part of the information gain is not fully
utilized during the relaxation part of the engine cycle. Also,
the acquired information is useless for work extraction when
the particle is found on the left of xm. These are the two
reasons why the measured efficiency is less than the unity.
Considering the true available information, we expect that this
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FIG. 5. (a) Average extracted power as a function of τ for
different xf with xm fixed at 16 nm. The black open triangles, red
solid squares, green open squares, blue solid circles, and magenta
solid circles correspond to the average power for xf = 8, 16, 24, 32,
and 40 nm, respectively. (b) Average extracted power as a function
of xf for different τ with xm fixed at 16 nm. The black solid squares,
red open squares, green solid circles, blue open circles, cyan solid
triangles, magenta open triangles, and dark yellow solid diamonds
correspond to the average power for τ = 0.2, 0.5, 1.0, 2.0, 5.0, 10.0,
and 20.0 ms, respectively. The solid curves in both panels (a) and (b)
are the plots of 〈−βW 〉ss/τ using Eq. (A9) in the Appendix.

engine may achieve the upper bound of the generalized second
law [10,17]. We also measured the efficiency of this engine at
maximum power and found that for xf < xm the engine has
vanishing efficiency at maximum power (which is for xf ∼ 0
and τ ∼ 0). However, for xf � xm, the efficiency at maximum
power is found to be highest (equal to ∼19%) for xf = 2.5xm

and near τR(τ = 2 ms).

III. CONCLUSIONS

In conclusion, we studied the cyclic Brownian information
engine consisting of a colloidal particle trapped in a harmonic
potential. Each engine cycle consists of three steps: particle
position measurement, shifting of the potential center based
on measurement outcome, and relaxation. Each process is
characterized by three parameters: xm for measurement, xf

for feedback, and τ for relaxation. We fix xm and change

FIG. 6. Plot of the engine’s efficiency as a function of xf for
different τ with xm fixed at 16 nm. The black solid squares, red open
squares, green solid circles, blue open circles, cyan solid triangles,
magenta solid triangles, and dark yellow solid diamonds correspond
to the efficiency for τ = 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, and 20.0 ms,
respectively. The solid curves are the plots of Eq. (A11) in the
Appendix.

xf for different τ in order to find an optimal condition for
maximum extracted work or power. We found that the global
maximum of extracted work per engine cycle is obtained
when the system is fully relaxed and xf = 2xm. On the other
hand, the global maximum of extracted power is obtained
when both xf and τ approach zero. For xf � xm, the extracted
power is maximum at finite τ , although the global maximum
of power is obtained when τ → 0; however, it is somewhat
useless because in this case both the extracted work and the
efficiency are vanishing. On the other hand, the extracted
work and the efficiency are maximum when the system is
fully relaxed for which the extracted power is vanishing. On
the basis of these observations, the optimized parameters for
maximum power extraction with nonzero work and efficiency
are xm ∼ 0.6σ , xf ∼ 2xm, and τ ∼ τR . Since our current
setup is capable of performing high precision measurements
and ultrafast feedback control, this should allow one to probe
how information is transformed in microscale and nanoscale
systems in a nonequilibrium steady state. Our paper will also
assist in design and understanding of efficient synthetic as
well as biological stochastic motors.

ACKNOWLEDGMENTS

This work was supported by the Korean govern-
ment under Grants No. IBS-R020-D1 (H.K.P.) and No.
2016R1A2B2013972 (J.D.N.).

G.P. and D.Y.L. contributed equally to this work.

APPENDIX: THEORY

Here, we explain the method to find the analytic results
presented in the main text. More details of the derivations are
found in Ref. [35].

As the engine repeats the cycle, the probability density for
the relative position x converges to the time-periodic state. We
focus on the probability density after the relaxation process
just before the next measurement and feedback process in
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the time-periodic regime. It will be denoted as pss(x) By
definition, pss(x) should be invariant under the measurement
and feedback process followed by the relaxation process for
the time interval τ . The invariance property allows us to find
pss(x).

It is convenient to consider a series expansion

pss(x) =
∞∑

n=0

cnφn(x), (A1)

where cn are the expansion coefficients and φn(x) =
Hn

x√
2σ

e−x2/2σ 2
with the Hermite polynomial Hn(x) of degree

n and the standard deviation σ defined in the main text. With
this expansion, the invariance condition of pss(x) under the
engine cycle takes the form of the self-consistent equation
[35]

c = W(I + F)c (A2)

for the column vector c = (c0, c1, c2, . . .)T = (c0, c̃)T for
the expansion coefficients, where I is the identity matrix and
the matrices W and F are in a block form:

W =
(

1 0
0 W̃

)
, F =

(
0 0
f̃ F̃

)
. (A3)

The submatrices W̃ and F̃ and the column vector f̃ have
the elements

W̃ab = e
−a τ

τR δab, (A4)

F̃ab = 1√
2πσ2aa!

a−1∑
k=0

(
a

k

)(
−

√
2xf

σ

)a−k

×
∫ ∞

xm

Hk

(
x√
2σ

)
φb(x)dx, (A5)

f̃a = 1√
2πσ2aa!

a−1∑
k=0

(
a

k

)(
−

√
2xf

σ

)a−k

×
∫ ∞

xm

Hk

(
x√
2σ

)
e
− x2

2σ2 dx, (A6)

for positive integers a and b with the relaxation time τR in
the main text. The value of c0 = 1/(

√
2πσ ) is fixed by the

normalization condition
∫

dxpss(x) = 1.

The self-consistent equation yields

c̃ = 1√
2πσ

W̃[I − (I + F̃)W̃]−1 f̃ . (A7)

This requires one to invert the infinite dimensional matrix,
which is intractable. Nevertheless, we can find an approximate
solution by truncating the series in Eq. (A1) keeping only
terms with n = 0, . . . , L. Under the truncation, I, W̃, and
F̃ become L × L matrices and f̃ becomes an L-dimensional
column vector. Since cn ∼ e−nτ/τR from Eq. (A7), the error
due to the truncation is of the order of e−(L+1)τ/τR [35]. Thus,
one can increase the accuracy by choosing a large enough
value of L.

With the experimental parameters τR = 3 ms, σ = 25 nm,
and xm = 16 nm, we evaluate the approximate solutions
c∗

1, c∗
2, . . . , c∗

L up to L = 27 as varying xf and τ. Hereafter,
the superscript ∗ stands for the approximate solution from
the truncation method. For those parameters, numerical errors
are negligible with L = 27. Once the coefficients c∗

n are
evaluated, the thermodynamic quantities of interest can be
easily obtained. First, the steady-state probability density is
given by

p∗
ss(x) =

L∑
n=0

c∗
nφn(x). (A8)

Thanks to the orthogonality of the Hermite functions, the
average extracted work is expressed as a simple form [35],
that is,

−β〈W ∗
ss〉 = −

√
8πσ (e2 τ

τR − 1)c∗
2 . (A9)

The average power is then obtained by the average work
divided by the cycle time τ . Using Eqs. (A2), (A5), and (A6),
we also obtain the probability p∗

R that the particle is on the
right side of xm in the measurement process:

p∗
R =

L∑
n=0

c∗
n

∫ ∞

xm

dxφn(x) = −
√

4πσ 2

xf

(eτ/τR − 1)c∗
1 .

(A10)

Finally, the efficiency is given by

η∗ = −β〈W 〉∗ss
〈I 〉∗ = β〈W 〉∗ss

p∗
R ln p∗

R + (1 − p∗
R ) ln(1 − p∗

R )
.

(A11)
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