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We reanalyze the factorization theorems for the Drell-Yan process and for deep inelastic scattering near
threshold, as constructed in the framework of the soft-collinear effective theory (SCET), from a new,
consistent perspective. In order to formulate the factorization near threshold in SCET, we should include an
additional degree of freedom with small energy, collinear to the beam direction. The corresponding
collinear-soft mode is included to describe the parton distribution function (PDF) near threshold. The soft
function is modified by subtracting the contribution of the collinear-soft modes in order to avoid double
counting on the overlap region. As a result, the proper soft function becomes infrared finite, and all the
factorized parts are free of rapidity divergence. Furthermore, the separation of the relevant scales in each
factorized part becomes manifest. We apply the same idea to the dihadron production in eþe− annihilation
near threshold, and show that the resultant soft function is also free of infrared and rapidity divergences.
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I. INTRODUCTION

Factorization theorems in which high-energy processes
are divided into hard, collinear, and soft parts are essential
in providing precise theoretical predictions. Though it is
difficult to probe the threshold region experimentally, it is
theoretically both interesting and tantalizing to exploit the
factorization near threshold in Drell-Yan (DY) process and
in deep inelastic scattering (DIS). A prominent distinction
near threshold is that there exists nonvanishing soft
interaction since the real contribution does not cancel
the virtual contribution completely due to the kinematic
constraint near threshold [1,2]. This distinctive feature near
threshold was also discussed in Refs. [3–6] in the frame-
work of the soft-collinear effective theory (SCET) [7–10].
It is well established in full quantum chromodynamics

(QCD) that the structure functions FDY for DY process and
F1 for DIS can be schematically written in a factorized
form as [1,2]

FDYðτÞ ¼ HDYðQ; μÞ · SDYðQð1 − zÞ; μÞ
⊗ fq=N1

ðx1; μÞ ⊗ fq=N2
ðx2; μÞ; ð1Þ

F1ðxÞ ¼ HDISðQ; μÞ · JðQ
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
; μÞ ⊗ SDISðQð1 − xÞ; μÞ

⊗ fq=Nðx; μÞ; ð2Þ

where the kinematical variables τ ¼ q2=s ¼ Q2=s,
z ¼ τ=ðx1x2Þ, and x ¼ −q2=2P · q ¼ Q2=2P · q are all
close to 1. Here qμ is the hard momentum carried by a
photon, s is the momentum squared of incoming hadrons
in DY, and Pμ is the momentum of an incoming hadron.
The hard functions HDYðQÞ and HDISðQÞ describe the
physics at the large scale Q. The PDF fi=Nðx; μÞ is the
collinear part from the incoming hadrons, which represents
the probability that a specific parton of type i in a hadron N
has a longitudinal momentum fraction x. The jet function
JðQ ffiffiffiffiffiffiffiffiffiffiffi

1 − x
p

; μÞ describes the energetic collinear particles
in the final state in DIS. Finally the soft functions
SDYðQð1 − zÞ; μÞ and SDISðQð1 − xÞ; μÞ describe the emis-
sion of soft particles. (Actually SDISðQð1 − xÞ; μÞ ¼ 1 to all
orders in αs, as will be discussed later.) And “⊗” implies an
appropriate convolution.
If we consider the factorization in SCET, the surmised

form of the factorized structure functions in full QCD
near threshold in Eqs. (1) and (2) looks reasonable at first
glance, but there are delicate and discomfiting aspects. In
full QCD, the PDF has the collinear divergences yielding
the DGLAP equation through special definitions of the
PDF or with other techniques [1]. And the soft part with the
eikonal cross sections is IR finite. In SCET, if we naively
separate the collinear, soft modes, there appear IR and
rapidity divergence in each factorized part. In this paper, we
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address this problem by considering additional modes
required in SCET near threshold.
The issues on the factorization near threshold in SCET

are summarized as follows: First, since the incoming active
partons take almost all the hadron momenta, the emission
of additional collinear particles is prohibited. It means that
only the virtual correction contributes to the collinear part
[11,12]. Therefore, if we consider the collinear interaction
alone, the PDF near threshold should be definitely different
from the PDF away from threshold, where the latter
includes the effect of real gluon emissions.
Second, even though we accept Eqs. (1) and (2) in SCET

and compute the factorized parts perturbatively, we encoun-
ter infrared (IR) divergences not only in the PDFs but also
in the soft functions. The IR divergence in the PDF can be
safely absorbed in the nonperturbative part, but the IR
divergence in the soft function is a serious problem since it
destroys the factorization and prevents a legitimate resum-
mation of large logarithms of 1 − x or 1 − z.
The existence of the IR divergence has been casually

disregarded in the belief that the final physical result should
be free of it. But it was pointed out in Refs. [13,14] that the
soft functions indeed contain IR divergence by carefully
separating the IR and ultraviolet (UV) divergences. In
Refs. [13,14], we have suggested how some of the
divergences can be transferred from the soft part to the
collinear part to make the soft function IR finite, while
the collinear part reproduces the PDF near threshold.
Basically this amounts to reshuffling divergences based
on physics near threshold, but it was difficult to explain
how the scale dependence in each part can be established
consistently to resum large logarithms. For example, the
typical scale for the PDF is μ ∼ ΛQCD or larger, and the
relevant scale to the soft function is μ∼Qð1−zÞ orQð1−xÞ.
Third, as we will see later, the soft parts in Eqs. (1) and

(2) include the rapidity divergence. The rapidity divergence
arises when the product of the lightcone momenta remains
constant, while each component goes to zero or infinity
[15,16]. Though the rapidity divergence exists in each
factorized part, the scattering cross section, which is a
convolution of the factorized parts, is free of the rapidity
divergence. However, the cancellation of the rapidity
divergence occurs only when the invariant masses of the
different modes are of the same order. Near threshold, the
invariant masses of the collinear particles and the soft
particles are different and there is no reason for the rapidity
divergence to cancel in the sum of the collinear and the
soft parts.
The naive extension of the factorized form in Eqs. (1)

and (2) to SCET contains all these problems. And the
questions are how we can obtain a consistent factorization
formula near threshold, and how it can be connected to the
factorization away from threshold. The predicament can
be resolved by noticing that, near threshold, there is an
additional degree of freedom with small energy, collinear to

the beam direction. The small energy scale is given by
ω ¼ Qð1 − zÞ in DY process or ω ¼ Qð1 − xÞ in DIS with
z ∼ x ∼ 1, and lies between the large scale Q and the low
scale ΛQCD. The main points of our paper are to identify
the new degrees of freedom, to incorporate them in the
definition of the PDF and the soft functions, to calculate the
perturbative corrections at order αs, and to show that we
obtain the proper factorization near threshold.
The high-energy processes including the threshold

region can be efficiently described by SCET. In SCET,
the n-collinear momentum scales as ðn · p; n · p; pμ

⊥Þ∼
Qð1; λ2; λÞ, where Q is the large energy scale and λ is the
small parameter for power counting in SCET. The
n-collinear momentum scales as Qðλ2; 1; λÞ. Here nμ and
nμ denote the lightcone vectors satisfying n2 ¼ 0, n2 ¼ 0

and n · n ¼ 2. In order to describe the threshold region,
from the n- and n-collinear interactions we decouple the
n-collinear-soft (csoft) and the n-csoft modes respectively,
which scale as

pμ
n;cs ∼ ωð1; α2;αÞ; pμ

n;cs ∼ ωðα2; 1; αÞ: ð3Þ

Here the power-counting parameter α for the csoft modes
satisfies the relation ωα ∼Qλ, such that the collinear and
csoft particles have p2 ∼ ω2α2 ∼Q2λ2. The additional
partition of the collinear modes depends on the new scale
introduced near threshold. The csoft modes are soft since
the overall scale is governed by the small scale ω, but the
momentum components scale like collinear momenta.
The nomenclature for the collinear-soft modes varies, as
in the collinear-soft (csoft) modes [17,18], the coft modes
[19], and the soft-collinear modes [20], referring to the
modes with similar momentum scaling in different situa-
tions. Here we will simply call these modes the csoft modes.
The important feature near threshold is that the incoming

active parton cannot emit real collinear particles, but the
particles in the csoft modes can be emitted. And we define
the PDF near threshold including the csoft modes. The new
definition of the PDF covers the threshold region as well as
the region away from threshold since the effect of the csoft
modes away from threshold is cancelled to all orders, while
it correctly describes the PDF near threshold. To avoid
double counting on the overlap region, the contribution of
the csoft modes should be subtracted from the soft part to
obtain the soft function. Here the soft modes near threshold
scale as ps ∼ ωð1; 1; 1Þ, hence the csoft mode can be also
considered to be a subset of the soft mode.
The effect of the csoft modes in the collinear and soft

modes is more interesting when we consider the details of
the higher-order calculations. Without the csoft modes,
both the soft part and the PDF contain the IR and rapidity
divergences. But when the csoft modes are subtracted from
the soft part, the resultant soft functions are free of the IR
and rapidity divergences, and the PDF is free of rapidity
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divergence when the contribution of the csoft modes is
included.
The structure of the paper is as follows: In Sec. II, the

main idea of incorporating the csoft modes is presented in
SCET. The PDF and the soft functions are defined near
threshold in DY and in DIS processes. In Sec. III, the soft
functions and the PDF are computed at order αs with the
csoft modes. In Sec. IV, we consider the factorization of the
dihadron production in eþe− annihilation near threshold, in
which the effect of the csoft modes is included in the
fragmentation functions. Finally, we conclude in Sec. V.

II. FACTORIZATION NEAR THRESHOLD
WITH THE APPROPRIATE PDF

A. Extension of the PDF to threshold

The main issue in constructing the PDF near threshold is
how to implement the tight kinematic constraint, and how
to relate it to the PDF away from threshold. Near threshold,
the incoming partons cannot emit real collinear particles,
hence only the virtual corrections contribute. On the other
hand, the emission of the csoft modes is allowed. Therefore
we start from defining the PDF near threshold by sub-
dividing the collinear field into the collinear and the csoft
modes. In Ref. [21], the decomposition of the collinear
and the csoft modes has been performed in order to
describe a fragmenting process to a jet with a large
momentum fraction z. It can be adopted in defining the
PDF near threshold.
We first decouple the soft mode ∼Qζð1; 1; 1Þ near

threshold from the collinear mode, where ζ is a small
parameter to characterize 1 − z or 1 − x. This is obtained
by redefining the collinear fields in terms of the soft
Wilson line [9] as

ξn → Ynξn; Aμ
n → YnA

μ
nY

†
n; ð4Þ

where the soft Wilson line Yn is given by

YnðxÞ ¼ P exp

�
ig
Z

∞

x
dsn · AsðsnÞ

�
: ð5Þ

Then we extract the csoft mode ∼Qζð1; α2; αÞ in the
collinear sector. That is, the collinear gluon Aμ

n is further
decomposed into Aμ

n → Aμ
n þ Aμ

n;cs. The resultant collinear
mode scales with the large energy Q, while the csoft
mode scales with Qζ. After the decomposition, the covar-
iant derivative can be written as iDμ ¼ iDμ

c þ iDμ
cs ¼

Pμ þ gAμ
n þ i∂μ þ gAμ

cs. Here Pμ (i∂μ) is the operator
extracting the collinear (csoft) momentum, which applies
only to the collinear (csoft) operator.
The collinear quark distribution function, which is the

PDF away from threshold, is defined as

fq=Nðx; μÞ ¼ hNðPþÞjχn
=n
2
δðxPþ − PþÞχnjNðPþÞi

¼ hNðPþÞjξn
=n
2
δðxPþ − n · iDcÞξnjNðPþÞi;

ð6Þ

where Pþ ≡ n · P is the operator extracting the largest
momentum component from the collinear field. The aver-
age over spin and color is included in the matrix element.
The combination χn ¼ W†

nξn is the collinear gauge-
invariant block with the collinear Wilson line Wn and
the collinear quark field ξn.
For the proper treatment of the PDF near threshold,

we need to include the csoft mode, which describes the
emission along the beam direction. It is implemented by
replacing n · iDc with n · iD ¼ n · iDc þ n · iDcs. Then we
define the PDF as

ϕq=Nðx; μÞ ¼ hNjξn
=n
2
δðxPþ − n · iDÞξnjNi; ð7Þ

which covers all the regions, near and away from threshold.
Note that the expression for ϕq=N is invariant under the
collinear and csoft gauge transformations. In order to show
the gauge invariance order-by-order in power counting in a
manifest way [22], we redefine the collinear gluon as

Aμ
n ¼ Âμ

n þ Ŵn½iDμ
cs; Ŵ†

n�; ð8Þ

where the collinear Wilson line Ŵn is expressed in terms
of the newly defined collinear gluon field Âμ. Then the
covariant derivative can be written as

iDμ ¼ iDμ
c þWniD

μ
csW

†
n; ð9Þ

where the hats in Wn and An are removed for simplicity.
Then the delta function in Eq. (7) is written as

δðxPþ − n · iDÞ ¼ WnδðxPþ − Pþ − n · iDcsÞW†
n: ð10Þ

We can decouple the csoft interaction from the collinear
part by redefining the collinear field as

ξn → Yn;csξn; Aμ
n → Yn;csA

μ
nY

†
n;cs; ð11Þ

which is similar to the decoupling of the soft interaction in
Eq. (4). Here the csoft Wilson line Yn;cs is defined as

Yn;csðxÞ ¼ P exp

�
ig
Z

∞

x
dsn · AcsðsnÞ

�
; ð12Þ

and Yn;cs is obtained by switching n ↔ n. Using the
relation n · iDcs ¼ Yn;csn · i∂Y†

n;cs, the final expression of
the PDF is given by
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ϕq=Nðx; μÞ ¼ hNjχn
=n
2
Y†
n;csYn;csδðxPþ − Pþ − i∂þÞ

× Y†
n;csYn;csχnjNi: ð13Þ

Note that this new definition of the PDF is also valid in
the region away from threshold. In this case the term i∂þ in
the delta function is much smaller than xPþ − Pþ, and it
can be safely neglected. Then, due to the unitarity of the
csoft Wilson line, the effect of the csoft modes cancels to all
orders. Hence we can recover Eq. (6) and describe the PDF
away from threshold with the collinear interactions only.
Near threshold, we can put the label momentum in Eq. (13)
as Pþ ¼ Pþ, and obtain the PDF as

ϕq=Nðx → 1; μÞ ¼ hNjχn
=n
2
Y†
n;csYn;csδðð1 − xÞPþ þ i∂þÞ

× Y†
n;csYn;csχnjNi: ð14Þ

The same result near threshold has been also derived in
SCETþ approach [23]. Therefore the expression in Eq. (13)
can be regarded as the definition of the PDF over all
kinematic regions. Using the expression in Eq. (14), we can
calculate the PDF near threshold at the parton level, i.e.,
ϕq=q. As we will see later, the calculation exactly repro-
duces the standard PDF in the limit x → 1 and it satisfies
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution.
From Eq. (14), the fluctuation of the csoft mode is

estimated as p2
cs ∼ Λ2

QCD. Therefore this mode scales as
pμ
cs ∼Qζð1; α2; αÞwith α ¼ ΛQCD=ðQζÞ. When we discuss

the decomposition of the collinear and the csoft modes
below Eq. (5), the csoft mode can be regarded as a subset of
the collinear mode. Hence the collinear mode would scale
as Qð1; λ02; λ0Þ with λ0 ∼ ζ1=2α. And the offshellness is
given by p2

c ∼ Λ2
QCD=ζ, which is much larger than the

typical hadronic scale squared. However, near threshold
this collinear mode contributes to the PDF only through the
virtual corrections without any specific scale. So there is no
impact on integrating out the mode ∼Qð1; λ02; λ0Þ and we
can scale it down to pc ∼Qð1; λ2; λÞ with λ ∼ ΛQCD=Q.
Then the collinear mode at the lower scale has the
offshellness p2

c ∼ Λ2
QCD.

B. Prescription of the factorization near threshold

With the new definition of the PDF, the naive factori-
zation formulas which are schematically given in Eqs. (1)
and (2) can be cast into an appropriate form near threshold.
In order to construct correct factorization theorems near
threshold, we take the following steps:

(i) After integrating out the hard interactions, we
construct the naive factorization formalism by de-
composing the collinear and soft interactions.

(ii) Next we decouple the csoft mode from the collinear
mode, and express the PDF in terms of the collinear
and the csoft fields.1

(iii) We define the soft functions by subtracting the csoft
contributions to avoid double counting.

The derivation of the naive factorization for the structure
functions in SCET is not repeated here. Instead we refer to
Ref. [14], where the details of the derivation are presented
and the naively factorized results are shown in Eqs. (2.13)
and (2.33) for DY and DIS respectively.
The naive factorization for the structure function in DY

process is written as

FDYðτÞ ¼ −Nc

Z
d4q
ð2πÞ4 θðq0ÞδðQ

2 − sτÞ

×
Z

d4xe−iq·xhN1N2jJ†μðxÞJμð0ÞjN1N2i

¼ HDYðQ; μÞ
Z

1

τ

dz
z
S̃DYðQð1 − zÞ; μÞ

×
Z

1

τ=z
fq=N1

ðyÞfq=N2

�
τ

zy

�
; ð15Þ

where Nc is the number of colors, Jμ is the electromagnetic
current, and Q2 ¼ q2 is the invariant mass squared of the
lepton pair. τ ¼ Q2=s and z ¼ Q2=ŝ, where ŝ is the center-
of-mass energy squared for the incoming partons. The
cross section is given by dσ=dτ ¼ σ0FDYðτÞ where σ0 ¼
4πα2Q2

f=ð3NcQ2Þ is the Born cross section for the quark
flavor f with the electric chargeQf. The naive soft function
S̃DY is defined as

S̃DYðQð1 − zÞ; μÞ

¼ 1

Nc
Trh0jY†

nYnδ

�
1 − zþ 2i∂0

Q

�
Y†
nYnj0i: ð16Þ

We call this naive soft function since the subtraction of the
csoft modes is not included yet.
The naive factorization for the structure function F1 in

the Breit frame is given by

F1ðxÞ ¼ −
1

4π

X
X

ð2πÞ4δð4Þðqþ P − pXÞhNjJ†μjXihXjJμjNi

¼ HDISðQ; μÞ
Z

1

x

dz
z
fq=N

�
x
z
; μ

�

×
Z

1

z

dy
y
JðQ

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
; μÞS̃DIS

�
Q

�
1 −

z
y

�
; μ

�
;

ð17Þ

1The csoft modes are included in the definition of the PDF in
full QCD, but in SCET, we have to devise these modes explicitly
and add them to the PDF.
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where Pμ ¼ Pþnμ=2 is the momentum of the hadron N
along the beam and the final-state jet function in the n
direction is defined as [9]

X
Xn

χnjXnihXnjχn ¼
n
2

Z
d4pXn

ð2πÞ3 n · PXn
JðpXn

Þ: ð18Þ

Here the naive soft function S̃DIS is given as

S̃DISðQð1 − zÞ; μÞ

¼ 1

Nc
Trh0jTrY†

nYnδ

�
1 − zþ n · i∂

Q

�
Y†
nYnj0i: ð19Þ

Based on the naive factorization in Eq. (15) and (17), we
construct the proper factorization theorem as follows: As
shown in Sec. II A, we decompose the collinear and the
csoft modes in the collinear sector and express the PDF in
Eq. (14). This procedure can be achieved by replacing the
collinear PDF fi¼q;q=N with the appropriate PDF ϕi=N. Then
we note that the csoft modes scaling as pn;cs ∼Qζð1;α2; αÞ
and pn;cs ∼Qζðα2; 1; αÞ are also the subsets of the soft
mode ∼Qζð1; 1; 1Þ, Therefore, in order to avoid double
counting for the overlap region, the csoft contribution
should be subtracted from the naive soft function.
Finally the correct factorization theorem for DYand DIS

processes are given as

FDYðτÞ ¼ HDYðQ; μÞ
Z

1

τ

dz
z
SDYðQð1 − zÞ; μÞ

×
Z

1

τ=z
ϕq=N1

ðyÞϕq=N2

�
τ

zy

�
; ð20Þ

FDISðxÞ ¼ HDISðQ; μÞ
Z

1

x

dz
z
JðQ ffiffiffiffiffiffiffiffiffiffi

1 − z
p

; μÞϕq=N

�
x
z
; μ

�
:

ð21Þ

Note that there is no correlation between ϕq=N1
and ϕq=N2

since the n-collinear(-csoft) and n-collinear(-csoft) fields
do not interact with each other at leading order in the power
counting of the collinear(-csoft) limit.2 The subtracting
procedure follows the basic idea of the zero-bin subtraction
[28], which can be legitimately applied to the csoft sector
[29]. Here SDY is the soft function for DY after subtracting
the csoft contribution from the naive soft function. As a
result the soft function contains neither IR nor rapidity
divergence contrary to the naive soft function. In Sec. III we
will see the details of the computation for the soft function
at order αs. When we compare Eq. (21) with Eq. (17),

we see that S̃DIS is not present in the final factorization
theorem since the csoft contribution cancels S̃DIS to all
orders in αs.
At tree level, both SDY in Eq. (20) and the naive soft

function are normalized to δð1 − zÞ. At order αs, SDY is
given as

Sð1ÞDY ¼ S̃ð1ÞDY − Sð1Þcs − Sð1Þcs ; ð22Þ

where the superscript denotes the order in αs. And Scs and
Scs are the n-csoft and n-csoft contributions respectively,
which are given as

Scs ¼
1

Nc
Trh0jY†

n;csYn;csδ

�
1 − zþ n · i∂

Q

�
Y†
n;csYn;csj0i;

ð23Þ

Scs ¼
1

Nc
Trh0jY†

n;csYn;csδ

�
1 − zþ n · i∂

Q

�
Y†
n;csYn;csj0i:

ð24Þ

Here Yn;cs and Yn;cs are the csoft Wilson lines in terms of
the n-csoft and n-csoft gluons respectively. Note that 2i∂0

in the argument of the naive soft function in Eq. (16) is
replaced by n · i∂ (n · i∂) in Scs (Scs) according to the
power counting.
In order to specify the soft region completely in Eq. (22),

we may introduce and add the contribution of the so-called
‘soft-soft (ssoft)’mode scaling as pss ∼Qζðα2; α2; α2Þ. But
the ssoft mode does not contribute to Eq. (22). In general
we can divide the full soft region into the ‘hard-soft
(hsoft)’, the csoft, and the ssoft regions. This division
and the partition of the full soft region are similar to the
procedure in constructing the hard, collinear, and soft
modes in SCET from QCD. The only difference is that
the large energy Q in the full theory is replaced with Qζ
here. Therefore, we can systematically factorize the full soft
modes into the hsoft, csoft and ssoft degrees of freedom. In
this respect, Sð1ÞDY in Eq. (22) can be regarded as the one-loop
correction to the hsoft function obtained from the matching
between the full soft and the csoft contributions. Since the
csoft modes can reproduce the low energy behavior of the
full soft function as the collinear modes do from the full
theory, we argue that the hsoft function remains IR finite at
higher orders.
For the soft function in DIS, the nonzero csoft contri-

bution only comes from Scs in Eq. (23). And it is the same
as the naive soft function, as well as the csoft contribution

to the PDF in Eq. (14). At order αs, S
ð1Þ
DIS ¼ S̃ð1ÞDIS − Sð1Þcs ¼ 0,

and SDISð1 − zÞ remains as δð1 − zÞ. In fact, S̃DIS and Scs
are the same to all orders in αs, hence the soft function for
DIS is given by δð1 − zÞ to all orders.

2A counterexample might be Glauber interactions, that are not
considered in this paper. We refer to Refs. [24,25] for details.
However the Glauber gluon problem in full QCD was solved in
Refs. [26,27] for the DY process, and it is simpler in DIS.
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III. THE SOFT FUNCTIONS AND THE PDF
NEAR THRESHOLD

We compute the soft functions and the PDF explicitly at
one loop in order to verify the statements in the previous
section. We regulate the UV divergence using the dimen-
sional regularization with D ¼ 4 − 2ϵ and the MS scheme.
We introduce the fictitious gluon mass mg to regulate the
IR divergence. We also consider the rapidity divergence
[15,16], which appear as the loop momentum kþ or k− goes
to infinity while kþk− remains finite. We employ the
Wilson lines as [16]

Wn ¼
X
perms:

exp

�
−

g
n · P

jn · Pgj−η
ν−η

n · An

�
;

Yn ¼
X
perms:

exp

�
−

g
n · P

j2Pzj−η=2
ν−η=2

n · As

�
; ð25Þ

and the rapidity divergence appears as poles in η. The
Wilson lines in the n direction can be obtained by switching
n and n. For the csoft mode, we use the form of the soft
Wilson line, but the soft field is replaced by the csoft field.

A. The soft functions near threshold

We first consider the soft function for DY process near
threshold. The naive soft function is defined in Eq. (16),
and the correct soft function can be obtained through the
csoft subtractions, given by Eq. (22). In order to see the
scale dependence clearly, we introduce the dimensionful
soft function, which is given as

S̃DYðω; μÞ ¼
1

Q
SDYðQð1 − zÞ; μÞ

¼ 1

Nc
Trh0jY†

nYnδðωþ 2i∂0ÞY†
nYnj0i; ð26Þ

where ω ¼ Qð1 − zÞ.
The soft virtual contribution at one loop is given as

MV
S ≡MV

S · δðωÞ

¼ −4ig2CF

�
μ2eγE

4π

�
ϵ

νηδðωÞ
Z

dDk
ð2πÞD

jkþ − k−j−η
ðk2 −m2

gÞkþk−
¼ αsCF

π
δðωÞ

�
1

ϵ2
þ 1

ϵ

�
ln

μ2

m2
g
− ln

ν2

m2
g

�

−
2

η

�
1

ϵ
þ ln

μ2

m2
g

�
þ 1

2
ln2

μ2

m2
g
− ln

μ2

m2
g
ln

ν2

m2
g
−
π2

12

�
;

ð27Þ

where kþ ¼ n · k and k− ¼ n · k. The real gluon emission
at order αs is given as

MR
S;DY ¼ αsCF

π

ðμ2eγEÞϵ
Γð1 − ϵÞ ν

η

Z
dkþdk−
kþk−

ðkþk− −m2
gÞ−ϵ

× jkþ − k−j−ηδðω − kþ − k−ÞΘðkþk− −m2
gÞ

¼ αsCF

π

Z
dkþdk−
kþk−

δðω − kþ − k−ÞΘðkþk− −m2
gÞ

¼ αsCF

π

�
δðωÞ

�
1

2
ln2

Λ2

m2
g
−
π2

6

�
þ
�
2

ω
ln
ω2

m2
g

�
Λ

�
:

ð28Þ

Here Θ is the step function, and we put ϵ ¼ η ¼ 0 since
the integral has neither the UV nor the rapidity divergence.
The final result is expressed in terms of the Λ-distribution.
It is defined as

Z
L

0

dω½gðωÞ�ΛfðωÞ¼
Z

L

0

dωgðωÞfðωÞ−
Z

Λ

0

dωgðωÞfð0Þ;

ð29Þ

where f is a smooth function at ω ¼ 0. In defining the
Λ-distribution, Λ is an arbitrary scale larger than ω, but it
suffices that Λ is slightly larger than ω.
In obtaining the final result in Eq. (28) with the

Λ-distribution, we write MR
S;DY as

MR
S;DYðωÞ ¼ δðωÞ

Z
Λ

0

dω0MR
S;DYðω0Þþ ½MR

S;DYðω≠ 0Þ�Λ:

ð30Þ

Note that this expression is independent of Λ. But the
scale Λ is chosen such that the integration over the delta
function δðω − kþ − k−Þ should yield a nonzero value.
That means Λ can be any value larger than ω, but from
physics Λ is slightly larger than ω, but of the same order,
i.e., Λ ∼Qð1 − zÞ. Figure 1 shows the phase space for the
real gluon emission, where the shaded green region denotes
the integration region for the part proportional to δðωÞ in
Eq. (28) or (30). The dashed line represents the constraint
for nonzero ω.
Combining Eqs. (27) and (28), we obtain the naive DY

soft function at order αs as

S̃ð1Þ
DYðω;μÞ ¼

αsCF

π

�
δðωÞ

�
1

ϵ2
þ 1

ϵ
ln
μ2

ν2
−
2

η

�
1

ϵ
þ ln

μ2

m2
g

�

− ln
ν2

Λ2
ln

μ2

m2
g
þ 1

2
ln
μ2

Λ2
−
π2

4

�
þ
�
2

ω
ln
ω2

m2
g

�
Λ

�
:

ð31Þ

We can clearly see that the naive one-loop result contains
the IR divergence as the logarithm of mg. This is due to the
incomplete cancellation of the virtual and real corrections.
If the phase space for the real gluon emission spanned all

JUNEGONE CHAY and CHUL KIM PHYS. REV. D 97, 094024 (2018)

094024-6



the region with no constraint, the virtual and the real
corrections would cancel,MR

S þMV
S ¼ 0. In this case, the

soft function would become zero at order αs, which holds
true to all orders due to the fact that Y†

nYn ¼ Y†
nYn ¼ 1.

However, as can be seen in Fig. 1, the phase space for the
real gluon emission does not cover all the IR region (near
the red line) available to the virtual corrections near
threshold. Therefore the incomplete cancellation yields
IR divergence in the naive DY soft function. The existence
of the IR divergence, which was pointed out in
Refs. [13,14], could invalidate the factorization near

threshold. Furthermore, as shown in Fig. 1, there is no
rapidity divergence in the real gluon emission since the
phase space responsible for the rapidity divergence is not
included in the phase space for the real gluon emission. The
rapidity divergence in the naive soft function comes solely
from the virtual contribution.
These problems posed by the naive soft contribution can

be resolved by introducing the csoft modes. The csoft
contribution is included in the definition of the PDF, but the
csoft momentum is also a subset of the soft momentum. In
order to avoid double counting, the csoft contribution is
subtracted from the naive soft function to define the true
soft function near threshold, given by Eq. (22). The
subtraction removes both the IR and the rapidity divergen-
ces in the soft function.
Let us first consider the contribution of the n-csoft mode

at order αs. In DY process, the contribution of the n-csoft
mode is the same as the n-csoft case due to the symmetry
under n ↔ n. We calculate the dimensionful csoft function
ScsðωÞ ¼ Scs=Q at order αs. Here ω ¼ Qð1 − zÞ and the
dimensionless csoft function Scs is defined in Eq. (23). The
virtual contribution of the csoft mode is the same as that of
the soft mode MV

cs ¼ MV
S , which is presented in Eq. (27).

The real gluon emission at order αs is written as

MR
csðωÞ¼

αsCF

π

ðμ2eγEÞϵ
Γð1−ϵÞν

η

Z
dkþdk−
kþk−

ðkþk−−m2
gÞ−ϵ

× jkþ−k−j−ηδðω−kþÞΘðkþk−−m2
gÞ

¼δðωÞ
Z

Λ

0

dω0MR
csðω0Þþ½MR

csðω≠0Þ�Λ; ð32Þ

where the result is written by invoking theΛ-distribution, in
which the IR divergence as ω → 0 is extracted in the term
proportional to δðωÞ. In Fig. 2 we show the structure of
the phase space for the real emission both in the kþ-k− and
in the kþ-k2L planes, where k2L ≡ kþk−. The shaded green

FIG. 2. The structure of the phase space for the real n-csoft gluon emission. The green region is the integration region for the part
proportional to δðωÞwith the Λ-distribution. The dotted line kþ ¼ ω is the constraint from the delta function for nonzero ω. In the kþ-k2L
plane, the integration region looks simple, and the regions where UV and the rapidity divergences arise are shown.

FIG. 1. The phase space for the real gluon emission in the naive
DY soft function after integrating over k2⊥. The constraint
specified by the delta function is shown as the dashed line
kþ þ k− ¼ ω. The green region denotes the region of integration
for the part proportional to δðωÞ with the Λ-distribution. The
regions where the UV and the rapidity divergences arise are
schematically illustrated.

THRESHOLD FACTORIZATION REDUX PHYS. REV. D 97, 094024 (2018)

094024-7



region is the integration region for the part proportional to
δðωÞ and the dashed line is the phase space
for MR

csðω ≠ 0Þ.
When the real and the virtual contributions are com-

bined, the contribution of the part proportional to δðωÞ
comes from the region “B” in the kþ-k2L plane of Fig. 2
since the virtual contribution covers the whole region above
the line kþk− ¼ m2

g with the minus sign relative to the real
contribution. Therefore the csoft contribution at order αs
can be written as

Sð1Þ
cs ðω; μÞ ¼ MV

S þMR
cs ¼ −IB · δðωÞ þ ½MR

csðω ≠ 0Þ�Λ:
ð33Þ

Here IB is the integral over the region B in Fig. 2, and it is
given as

IB ¼ αsCF

π

ðμ2eγEÞϵ
Γð1 − ϵÞ ν

η

Z
∞

m2
g

dk2L
ðk2L −m2

gÞ−ϵ
k2L

Z
∞

Λ
dkþk

−1−η
þ

¼ αsCF

π

�
1

η
þ ln

ν

Λ

��
1

ϵ
þ ln

μ2

m2
g

�
: ð34Þ

Here the original rapidity regulator jkþ − k−j−η is replaced
with k−ηþ . In the region B of Fig. 2, k− in the regulator can be
safely ignored since the rapidity divergence occurs only
when kþ goes to infinity and k− goes to zero while k2L ¼
kþk− remains finite. Actually keeping k− in the regulator
has no effect on the calculation of the region B in the limit
η → 0. Therefore there is no difference between the original
regulator and k−ηþ as far as we integrate over the region B. In
the kþ-k2L plane, IB includes the UV (IR) divergence as k2L
goes to infinity (m2

g). The computation of MR
csðω ≠ 0Þ is

straightforward. Finally the bare csoft contribution at order
αs is given as

Sð1Þ
cs ðω; μÞ ¼ αsCF

π

�
−
�
1

η
þ ln

ν

Λ

��
1

ϵ
þ ln

μ2

m2
g

�
δðωÞ

þ
�
1

ϵ
þ ln

μ2

m2
g

��
1

ω

�
Λ

�
: ð35Þ

The n-csoft contribution Ssc is the same as Ssc due to the
symmetry under n ↔ n. We finally obtain the proper soft
function for DY process at order αs as

Sð1Þ
DYðω; μÞ ¼ S̃ð1Þ

DY − Sð1Þ
cs − Sð1Þ

cs ¼ S̃ð1Þ
DY − 2Sð1Þ

cs

¼ αsCF

π

�
δðωÞ

�
1

ϵ2
þ 1

ϵ
ln

μ2

Λ2
þ 1

2
ln2

μ2

Λ2
−
π2

4

�

− 2

��
1

ϵ
þ ln

μ2

ω2

�
1

ω

�
Λ

�
: ð36Þ

Note that this soft function contains only the UV diver-
gence with neither rapidity nor IR divergences. This
function is governed by a single scale ω ∼ Λ ∼Qð1 − zÞ,

hence the scale μ to minimize the large logarithms is given
by Qð1 − zÞ.
The dimensionful soft function in Eq. (36) can be easily

converted to the dimensionless soft function. From the
definition of the Λ-distribution in Eq. (29), we have the
following relations to the standard plus distribution:

δðωÞ ¼ 1

Q
δð1 − zÞ;

�
1

ω

�
Λ
¼ 1

Q

�
1

ð1 − zÞþ
− ln

Λ
Q
δð1 − zÞ

�
;

�
1

ω
ln

μ

ω

�
Λ
¼ 1

Q

�
δð1 − zÞ

�
1

2
ln2

Λ
Q
− ln

Λ
Q
ln

μ

Q

�

þ 1

ð1 − zÞþ
ln

μ

Q
−
�
lnð1 − zÞ
1 − z

�
þ

�
: ð37Þ

Then the renormalized dimensionless soft function to next-
to-leading order (NLO) in αs is given as

SDYðQð1−zÞ;μÞ¼ 1

Q
SDYðω;μÞ

¼δð1−zÞþαsCF

π

�
δð1−zÞ

�
1

2
ln2

μ2

Q2
−
π2

4

�

−2 ln
μ2

Q2

1

ð1−zÞþ
þ4

�
lnð1−zÞ
1−z

�
þ

�
;

ð38Þ
which is the same as WDY in Ref. [13,14].
We now consider the soft function in DIS. The naive soft

function has been defined in Eq. (19). Note that the naive
soft function is the same as the n-csoft function in Eq. (23)
except that the Wilson lines involved are the soft fields for
the naive soft function, and the csoft fields for the csoft
function. The soft and n-csoft momenta scale as pμ

s ∼
Qζð1; 1; 1Þ and pμ

cs ∼Qζð1; α2; αÞ. However, since both
functions involve the same scaleQð1 − zÞ ∼Qζ in the delta
functions, they are the same to all orders in αs.

3

Unlike DY process, there is no n-csoft contribution in
DIS. When we consider n-csoft contribution from Eq. (19),
the delta function becomes δð1 − zÞ sinceQð1 − zÞ is much
larger than n · pcs in power counting. The n-csoft real
emission is the same as the virtual n-csoft contribution but
with the opposite sign. Therefore the n-csoft contribution
cancels at one loop, and to all orders in αs. As a result,

3In Ref. [23], it has been shown that the naive soft function and
the csoft contribution in DIS at one loop are the same. However,
different rapidity regulators are used in the naive soft and the csoft
functions in Ref. [23]. And the virtual and real contributions for
each function are given differently, but the sum turns out to be
the same as ours. In our analysis we note that the rapidity
divergence is regulated only by k−ηþ when we combine the real
and virtual contributions. It is clear by considering the phase
space analysis illustrated in Fig. 2, which also holds for the naive
soft function in DIS.
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the proper soft function in DIS remains as δð1 − zÞ to all
orders in αs.

B. The PDF at NLO near threshold

From the definition of the PDF near threshold in
Eq. (14), we compute the correction at order αs. If we
take the perturbative limit, the PDF at the parton level can
be additionally factorized as [5,11,23,30]

ϕq=qðx;μÞ¼
1

2Q
TrhqðpþÞjχnj0i

=n
2
h0jχnjqðpþÞi

·
1

Nc
Trh0jY†

n;csYn;csδ

�
1−xþn · i∂

Q

�
Y†
n;csYn;csj0i

¼CqðQ;μÞ ·SscðQð1−xÞ;μÞ; ð39Þ

where Q ¼ pþ is the large quark momentum, Cq is the
collinear part, and Ssc is the csoft function defined
in Eq. (23).
At one loop, the virtual contribution for Cq is given as

MV
C ¼ αsCF

π

��
1

ϵ
þ ln

μ2

m2
g

��
1

η
þ ln

ν

Q
þ 1

�
þ 1 −

π2

6

�
:

ð40Þ

The wave function renormalization and the residue are
given by

Zð1Þ
q þ Rð1Þ

q ¼ −
αs
4π

�
1

ϵ
þ ln

μ2

m2
g
−
1

2

�
: ð41Þ

And we obtain the collinear part to NLO as

CqðQ; μÞ
¼ 1þMV

C þ Zð1Þ
q þ Rð1Þ

q

¼ 1þ αsCF

π

��
1

ϵ
þ ln

μ2

m2
g

��
1

η
þ ln

ν

Q
þ 3

4

�
þ 9

8
−
π2

6

�
:

ð42Þ

It contains the rapidity, the UV, and the IR divergences.
From Eqs. (35) and (37), we also obtain the dimension-

less csoft function to NLO as

ScsðQð1− xÞ;μÞ

¼ δð1− xÞ þ αsCF

π

�
−
�
1

ϵ
þ ln

μ2

m2
g

��
1

η
þ ln

ν

Q

�
δð1− xÞ

þ
�
1

ϵ
þ ln

μ2

m2
g

�
1

ð1− xÞþ

�
: ð43Þ

Therefore the bare PDF to order αs is given as

ϕq=qðx;μÞ ¼ 1þ αsCF

2π

�
δð1− xÞ

�
3

2

�
1

ϵ
þ ln

μ2

m2
g

�
þ 9

4
−
π2

3

�

þ 2

ð1− xÞþ

�
1

ϵ
þ ln

μ2

m2
g

��
: ð44Þ

The PDF near threshold is free of rapidity divergence, and
it is the same as the PDF away from threshold when we
take the limit x → 1. Obviously, the renormalization-group
behavior satisfies the DGLAP evolution in the limit x → 1,
and we do not repeat solving the renormalization group
equations and refer to Refs. [5,6].

IV. DIHADRON PRODUCTION IN e + e−
ANNIHILATION NEAR THRESHOLD

We consider the dihadron production in eþe− annihila-
tion near threshold: e−eþ → h1 þ h2 þ X, where X denotes
soft particles in the final state. Here the final hadrons h1 and
h2 in the n and n direction take almost all the energies of
the mother partons pþ

h1 ¼ x1Q, p−
h2 ¼ x2Q, where Q is the

center-of-mass energy and x1;2 are close to 1. The scattering
cross section is factorized into the two fragmentation
functions and the soft function. If we naively compute
the soft function without the csoft subtraction, here we also
have the IR divergence as well as the rapidity divergence,
invalidating the factorization theorem. Therefore we define
the fragmentation functions in terms of the collinear and the
csoft fields describing the radiations in the directions of the
observed hadrons. Then we can properly subtract the csoft
interactions from the naive soft function, and as a result the
factorization theorem can be written as

dσ
dpþ

h1dp
−
h2
¼ σ0HDHðQ2;μÞ

Q2

Z
1

x1

dz1
z1

Z
1

x2

dz2
z2

Dh1=q

�
x1
z1
;μ

�

×Dh2=q

�
x2
z2
;μ

�
SDHðQð1− z1Þ;Qð1− z2Þ;μÞ:

ð45Þ

Here σ0 is the Born scattering cross section and the
threshold region corresponds to x1;2 → 1. The hard function
HDH is given by the same asHDY in Eq. (20). SDH is the soft
function for the dihadron production and it can be obtained
after the csoft subtraction from the naive soft function.
Following the analysis of the fragmentation function to a

jet (FFJ) in the large z limit [21], we define the hadron
fragmentation function as

Dh1=qðz1;μÞ ¼
zD−3
1

2Nc
Trh0jY†

n;csYn;cs
=n
2
χnjh1i

× hh1jχnδ
�
pþ
h1

z1
−P†

þ þ n · i∂
�
Y†
n;csYn;csj0i;

ð46Þ
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where we set the transverse momentum of the hadron p⊥
h1 as

zero. Similarly, the fragmentation function from the anti-
quarkDh2=qðz2; μÞ can be obtained in terms of then-collinear
and n-csoft fields. As in the case of the PDF, this definition is
valid near, and away from threshold. Near threshold, putting
P†

þ¼pþ
h1

we can further simplify Eq. (46) as

Dh1=qðz1 → 1; μÞ

¼ 1

2Nc
Trh0jYcs†

n Ycs
n
=n
2
χnjh1i

× hh1jχnδðpþ
h1
ð1 − z1Þ þ n · i∂ÞY†

n;csYn;csj0i: ð47Þ
We can easily check that the result at order αs for Eq. (47) at
the parton level is given by the same as the result on the PDF
and its renormalization behavior follows the DGLAP evo-
lution in the large z limit.
For the soft function, we start with the naive soft

function, which is defined as

S̃DHðQð1 − z1Þ; Qð1 − z2ÞÞ

¼ 1

Nc
Trh0jY†

nYnδ

�
1 − z1 þ

n · i∂
Q

�

× δ

�
1 − z2 þ

n · i∂
Q

�
Y†
nYnj0i: ð48Þ

The csoft functions can be obtained by taking the n- and n-
csoft limits on S̃DH, which are subtracted from the naive
soft function. As a result the NLO correction to the soft
function for dihadron production is given by

Sð1ÞDH ¼ S̃ð1ÞDH − Sð1Þcs · δð1 − z2Þ − Sð1Þcs · δð1 − z1Þ; ð49Þ

where the csoft functions Scs and Scs have been defined in
Eqs. (23) and (24) respectively.
In order to see the scale dependence transparently, we

consider the NLO calculation with the dimensionful soft
function. It is defined as SDHðωþ;ω−Þ ¼ SDHðQð1 − z1Þ;
Qð1 − z2ÞÞ=Q2, where ωþ¼Qð1−z1Þ and ω− ¼
Qð1 − z2Þ. Then the naive dimensionful soft function is
expressed as

S̃DHðωþ;ω−Þ ¼
1

Nc
Trh0jY†

nYnδðωþ þ n · i∂Þ
× δðω− þ n · i∂ÞY†

nYnj0i: ð50Þ

The virtual one-loop contribution to S̃DH is given by
MV

S;DH ¼ δðωþÞδðω−ÞMV
S , where the one loop result MV

S

is given in Eq. (27). And the real contribution is given as

MR
S;DH ¼ αsCF

π

ðμ2eγEÞϵ
Γð1 − ϵÞ ν

η

Z
dkþdk−
kþk−

ðkþk− −m2
gÞ−ϵjkþ − k−j−ηΘðkþk− −m2

gÞδðωþ − kþÞδðω− − k−Þ

¼ αsCF

π

Θðωþω− −m2
gÞ

ωþω−
: ð51Þ

Here we put ϵ ¼ η ¼ 0 since the integral has no UV, rapidity divergences.
MR

S;DH in Eq. (51) is IR divergent as ω� → 0. In order to extract the IR divergence, we employ the Λ-distribution defined
in Eq. (29), where the upper values for ω� are set as Λ�. Then Eq. (51) can be rewritten as

MR
S;DH¼

αsCF

π

�
δðωþÞδðω−Þ

Z
Λþ

m2
g=Λ−

dkþ
kþ

Z
Λ−

m2
g=kþ

dk−
k−

þδðω−Þ
�
1

ωþ

Z
Λ−

m2
g=ωþ

dk−
k−

�
Λþ

þδðωþÞ
�
1

ω−

Z
Λþ

m2
g=ω−

dkþ
kþ

�
Λ−

þ
�
1

ωþ

�
Λþ

�
1

ω−

�
Λ−

�

¼αsCF

π

�
δðωþÞδðω−Þ

1

2
ln2

ΛþΛ−

m2
g

þδðω−Þ
�
1

ωþ
ln
Λ−ωþ
m2

g

�
Λþ

þδðωþÞ
�
1

ω−
ln
Λþω−

m2
g

�
Λ−

þ
�
1

ωþ

�
Λþ

�
1

ω−

�
Λ−

�
: ð52Þ

Combining the virtual and the real contributions, we obtain the naive soft function at order αs as

S̃ð1Þ
DHðωþ;ω−Þ ¼ δðωþÞδðω−ÞMV

S þMR
S;DHðωþ;ω−Þ

¼ αsCF

π

�
δðωÞ

�
1

ϵ2
þ 1

ϵ
ln
μ2

ν2
−
2

η

�
1

ϵ
þ ln

μ2

m2
g
− ln

ν2

m2
g
ln

μ2

m2
g

�
þ 1

2
ln2

μ2

m2
g
þ 1

2
ln2

ΛþΛ−

m2
g

−
π2

12

�

þ δðω−Þ
�
1

ωþ
ln
Λ−ωþ
m2

g

�
Λþ

þ δðωþÞ
�
1

ω−
ln
Λþω−

m2
g
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þ
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�
1

ω−

�
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�
: ð53Þ

This result contains the IR and the rapidity divergences as expected.
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From Eq. (49) the csoft contributions to be subtracted from the naive dimensionful soft function are given by

δðω−ÞSð1Þ
cs ðωþÞ þ δðωþÞSð1Þ

cs ðω−Þ. And using Eq. (35) we write the NLO csoft contributions as

δðω−ÞSð1Þ
cs ðωþÞ þ δðωþÞSð1Þ

cs ðω−Þ ¼
αsCF

π

�
−
�
2

η
þ ln

ν2

ΛþΛ−

��
1

ϵ
þ ln

μ2

m2
g

�
δðωþÞδðω−Þ

þ
�
1

ϵ
þ ln

μ2

m2
g

��
δðω−Þ

�
1

ωþ

�
Λþ

þ δðωþÞ
�
1

ω−

�
Λ−

��
: ð54Þ

Finally, subtracting Eq. (54) from Eq. (53) we obtain the NLO result for the bare dimensionful soft function as

SDHðωþ;ω−; μÞ ¼ δðωþÞδðω−Þ þ
αsCF

π

�
δðωþÞδðω−Þ

�
1

ϵ2
þ 1

ϵ
ln

μ2

ΛþΛ−
þ 1

2
ln2

μ2

ΛþΛ−
−
π2

12

�

− δðω−Þ
�
1

ωþ

�
1

ϵ
þ ln

μ2

Λ−ωþ

��
Λþ

− δðωþÞ
�
1

ω−

�
1

ϵ
þ ln

μ2

Λþω−

��
Λ−

þ
�
1

ωþ

�
Λþ

�
1

ω−

�
Λ−

�
: ð55Þ

We clearly see that the problematic IR and rapidity divergences are removed by the csoft subtraction as in DY process.
Using Eq. (37), we can convert Eq. (55) to the dimensionless soft function. And the scales for the logarithms are determined
by μ ∼ Λ�. As a result, the renormalized soft function at NLO is given as

SDHðQð1 − z1Þ; Qð1 − z2Þ; μÞ ¼ δð1 − z1Þδð1 − z2Þ þ
αsCF

π

�
δð1 − z1Þδð1 − z2Þ

�
1

2
ln

μ2

Q2
−
π2

12

�

− δð1 − z2Þ
�

1
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ln
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þ
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1
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ln

μ

Qð1 − z2Þ
�
þ

þ
�

1

1 − z1

�
þ

�
1

1 − z2

�
þ
: ð56Þ

V. CONCLUSION

In the framework of SCET, we have scrutinized the
factorization theorems near threshold in DY, DIS processes
and in the dihadron production in eþe− annihilation by
introducing the csoft modes. The important point in
analyzing these processes near threshold is that there
appears a csoft mode governed by the scale ω ¼
Qð1 − zÞ ≪ Q. Near threshold, real collinear particles
for the PDF cannot be emitted due to the kinematical
constraint, while the csoft modes can. The effect of the
csoft modes can be implemented by decoupling the csoft
modes from the collinear fields. The resultant PDF consists
of the csoft Wilson lines along with the collinear fields.
Note that the definitions of the PDF and the fragmentation
function in Eqs. (13) and (46) with the csoft modes are valid
not only near threshold but also away from threshold.
Away from threshold, the effect of the csoft mode is
cancelled, and the collinear mode alone describes the
whole process.
The naive collinear contribution to the PDF contains the

rapidity divergence, but it is cancelled when the contribu-
tion of the csoft modes is included. And the resultant PDFs
are the PDF obtained from the full QCD. In Ref. [14], the
same conclusion has been obtained by reshuffling suitable

divergences in the collinear and the soft parts, but here
the physics becomes more elaborate. It is also true for the
fragmentation function that the definition including the
csoft modes yields the fragmentation function in the full
QCD, which can be extended to the threshold region.
The csoft mode is also a subset of the soft mode, hence

the contribution of the csoft modes should be subtracted
in the soft part to avoid double counting. And the soft
functions after the subtraction are free of IR and rapidity
divergences, and can be handled perturbatively. It is
because the phase space for the soft modes responsible
for the IR and rapidity divergences coincides with the
phase space for the csoft modes. Therefore the IR and
rapidity divergences are cancelled when the csoft modes are
subtracted from the soft part.
The renormalization group evolution of the soft func-

tions and the PDF can be obtained, for example, as in
Refs. [5,6], so we will not repeat it here. But the important
point is that the introduction of the csoft modes justifies the
use of the renormalization group equation since we have
explicitly verified that the higher-order correction to the
soft function in DY process (it is zero in DIS) is indeed IR
finite and free of rapidity divergences. So far, it has been
assumed that the soft functions should be IR finite. But, in
fact, the removal of the IR and rapidity divergences is
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sophisticated and it is accomplished by including the csoft
modes. In this paper, we give a firm basis to the use of the
renormalization group equation in resumming large loga-
rithms near threshold.
In Refs. [11,12], the authors have considered the same

processes, i.e., DY and DIS processes near threshold.
However, their results are different from the ones presented
here. The main difference is that the PDFs in Refs. [11,12]
are formulated by combining the collinear and the soft
mode. As a result there arises a correlation between the
two collinear sectors in DY process. The prescription in
Refs. [11,12] might hold only when Qζ ∼ ω is close to
ΛQCD, where the csoft modes become identical to the soft
mode. In this paper we set Qζ ∼ ω as a free small energy
scale. As far as Qζ ∼ ω ≫ ΛQCD, with the help of the csoft
modes, we can formulate the factorization theorem where
no correlation arises between two collinear and soft sectors.
The final results presented here are the same as those in

previous literature [13,14], so we may wonder what can be
learned from this analysis. In spite of the same result, there
are some illuminating points in our factorization procedure,
which are worth commenting. First, the new scaleQð1 − zÞ
is introduced, and it does not have to be related to ΛQCD.
Previously it has been considered to accommodate the new
scale with the power counting of λ ∼ ΛQCD=Q.
Second, the introduction of the csoft modes yields the

soft function free of IR and rapidity divergences. Without
the csoft modes, careful analysis shows that the real
emission in the soft function contains IR divergence which
is not cancelled by the virtual correction. Furthermore,
there exists rapidity divergence. We have confirmed that the
soft functions are indeed free of IR and rapidity divergen-
ces, and the PDF turns out to be the same as the PDF in
full QCD.

Third, it becomes apparent which scale governs in each
factorized parts. The naive soft function includes the
contributions from different scales, but by separating the
csoft modes, it now becomes apparent that each part
receives the appropriate scale dependence. For the PDF,
the scale in the logarithm is of order μ ∼ ΛQCD or larger and
for the soft function, μ ∼ ω ¼ Qð1 − zÞ, or Qð1 − xÞ. From
the study of the dijet production [19,20], we now know that
there should be additional degrees of freedom to account
for the resummation with respect to the different scales in
different factorized parts. And it is also true in DY and
DIS processes, as well as the dihadron production, near
threshold.
In conclusion, we have analyzed the factorization near

threshold in SCET by including the csoft modes in defining
the PDF, and subtracting the csoft contributions for the
soft functions. The newly defined PDF can be properly
extended to threshold and the resultant factorization theo-
rem takes care of the problem of the IR and rapidity
divergences in the soft function, which enables the resum-
mation of the large logarithms through the renormalization
group equation. Only after the inclusion of the csoft modes,
the factorized result in SCET, Eqs. (20) and (21), is
consistent with the result in full QCD.
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