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Abstract: Understanding Higgs mechanism for higher-spin gauge fields is an outstanding

open problem. We investigate this problem in the context of Kaluza-Klein compactifica-

tion. Starting from a free massless higher-spin field in (d + 2)-dimensional anti-de Sitter

space and compactifying over a finite angular wedge, we obtain an infinite tower of heavy,

light and massless higher-spin fields in (d + 1)-dimensional anti-de Sitter space. All mas-

sive higher-spin fields are described gauge invariantly in terms of Stueckelberg fields. The

spectrum depends on the boundary conditions imposed at both ends of the wedges. We ob-

served that higher-derivative boundary condition is inevitable for spin greater than three.

For some higher-derivative boundary conditions, equivalently, spectrum-dependent bound-

ary conditions, we get a non-unitary representation of partially-massless higher-spin fields

of varying depth. We present intuitive picture which higher-derivative boundary conditions

yield non-unitary system in terms of boundary action. We argue that isotropic Lifshitz in-

terfaces in O(N) Heisenberg magnet or O(N) Gross-Neveu model provides the holographic

dual conformal field theory and propose experimental test of (inverse) Higgs mechanism

for massive and partially massless higher-spin fields.
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People used to think that when a thing changes, it must be in a state of change,

and that when a thing moves, it is in a state of motion.

This is now known to be a mistake.

bertrand russell

1 Introduction

Massive particles of spin higher than two are not only a possibility — both theoretically

as in string theory and experimentally as in hadronic resonances (See, for example, [1])

— but also a necessity for consistent dynamics of lower spin gauge fields they interact to

(See, for example, [2]). As for their lower spin counterpart, one expects that their masses

were generated by a sort of Higgs mechanism, combining higher-spin Goldstone fields [3, 4]

to massless higher spin gauge fields. Conversely, one expects that, in the massless limit,

massive higher-spin fields undergo inverse Higgs mechanism and split its polarization states

irreducibly into massless higher-spin gauge fields and higher-spin Goldstone fields. On

the other hand, it is well-known that the higher-spin gauge invariance is consistent only

in curved background such as (anti)-de Sitter space ((A)dS). As such, gauge invariant

description of massive higher-spin fields and their Higgs mechanism would necessitate any

dynamical description of the (inverse) Higgs mechanism formulated in (A)dS background.

A novel feature in (A)dS background, which opens up a wealth of the Higgs mechanism,

is that a massive higher-spin field may have different number of possible polarizations as

its mass is varied. The (A)dS extension of massive higher-spin field in flat space can be

in all possible polarizations. They have arbitrary values of mass and are called massive

higher-spin fields. In (A)dS background, there are also massive higher-spin fields for which

part of possible polarizations is eliminated by partial gauge invariance. They have special

values of mass-squared and are called partially massless higher-spin fields. Just as the Higgs

mechanism of massive higher-spin fields are not yet fully understood, the Higgs mechanism

(if any) of partially massless higher-spin fields remains mysterious. For both situations,

what are origins and patterns of massive higher-spin fields?

In this work, we lay down a concrete framework for addressing this question and, using

it, to analyze the pattern of the massive higher-spin fields as well as Higgs mechanism that

underlies the mass spectrum. The idea is to utilize the Kaluza-Klein approach [5, 6] for

compactifying higher-dimensional (A)dS space to lower-dimensional (A)dS space and to

systematically study mass spectrum of compactified higher-spin field in gauge invariant

manner. This Kaluza-Klein setup also permits a concrete realization of holographic dual

conformal field theory from which the above Higgs mechanism can also be understood in

terms of conventional global symmetry breaking.

The Kaluza-Klein compactification provides an elegant geometric approach for dy-

namically generating masses. Compactifying a massless field in higher dimensions on a

compact internal space, one obtains in lower dimensions not only a massless field but also

a tower of massive fields. In (A)dS space, a version of compactification of spin-zero, spin-

one and spin-two field theories were studied in [7, 8]. In flat space, compactification of
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higher-spin field theories was studied in [9, 10]. The Kaluza-Klein mass spectrum depends

on specifics of the compact internal space. Here, the idea is that we start from unitary,

massless higher-spin field in a higher-dimensional (A)dS space and Kaluza-Klein compact-

ify to a lower-dimensional (A)dS space. One of our main results is that, to produce not

only massive but also partially massless higher-spin fields upon compactification, differ-

ently from the above situations, we must choose the internal space to have boundaries

and specify suitable boundary conditions at each boundaries. We shall refer to the com-

pactification of higher-dimensional (A)dS space over an internal space with boundaries to

lower-dimensional (A)dS space as “(A)dS waveguide” compactification.1

Compactifying a unitary, massless spin-s field on an (A)dS waveguide whose internal

space is a one-dimensional angular wedge of size [−α, α], we show that presence of bound-

aries and rich choices of boundary condition permit a variety of mass spectra of higher-spin

fields in lower-dimensional (A)dS space (as summarized at the end of section 8.2 and in

figure 7). These spectra reveal several interesting features:

• The spectra contain not only massless and massive fields but also partially mass-

less fields [12, 13]. The partially massless fields arises only if the internal compact

space has boundaries and specific boundary conditions. The (non)unitarity of par-

tially massless fields in (A)dS space can be intuitively understood by the presence of

boundary degrees of freedom and (non)unitarity of their dynamics (see section 7).

• The spectra split into two classes, distinguished by dependence on the waveguide size,

α. The modes that depend on the size is the counterpart of massive Kaluza-Klein

states in flat space compactification, so they all become infinitely heavy as the size

α is reduced to zero. We call them Kaluza-Klein modes. The modes independent of

the wedge angle is the counterpart of zero-mode states in flat space compactification.

We call them ground modes.

• The (A)dS compactification features two independent scales: the scale of waveguide

size and the scale of (A)dS curvature radius. This entails an interesting pattern

of the resulting mass spectra. While the Kaluza-Klein modes are all fully massive

higher-spin fields (thus the same as for the flat space compactification), the ground

modes comprise of full variety of mass spectra: massless, partially massless and fully

massive higher-spin fields.

• All massive higher-spin fields, both fully massive and partially massless, are struc-

tured by the Stueckelberg mechanism, in which the Goldstone modes are provided

by a tower of higher-spin fields of varying spins. The Higgs mechanism can be un-

derstood in terms of branching rules of Verma so(d, 2) modules. It turns out that

1Formally, the compactifications [9, 10] and its (A)dS counterparts [7, 8] may be viewed as projectively

reducing on a conformal hypersurface. This viewpoint was further studied for partially massless spin-two

system in [11]. Starting from non-unitary conformal gravity, this work showed that projective reduction

yields partially massless spin-two system, which is also non-unitary. Here, we stress we are taking an entirely

different route of physics. We start from unitary, Einstein gravity and compactify on a suitable internal

space with boundaries to obtain non-unitary, partially massless spin-two system. Our setup has another

added benefit of physics that Higgs mechanism can be triggered by dialing choices of boundary conditions.
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massless spin-s gauge symmetry on (A)dSd+2 is equivalent to the Stueckelberg gauge

symmetries [14] for spin-s on (A)dSd+1 [15].

• The ground mode spectra and (inverse) Higgs mechanism therein match perfectly

with the critical behavior we expect from d-dimensional isotropic Lifshitz interfaces

in (d + 1)-dimensional conformal field theories such as O(N) Heisenberg system or

Gross-Neveu fermion system in the large N limit. Both are realizable in heavy

fermion magnetic materials and in multi-stack graphene sheets at Dirac point, re-

spectively. This suggests an exciting possibility for condensed-matter experimental

realizations/tests of (inverse) Higgs mechanism for higher-spin gauge fields.

In obtaining these results, we utilized several technicalities that are worth of

highlighting.

• As our focus is on mass spectra and their Higgs mechanism, we limit our analysis

to non-interacting higher-spin fields. Moreover, we analyze linearized field equations

instead of quadratic action. It is known that the two approaches are equivalent in so

far as the gauge transformations are also kept to the linear order.

• For spectral analysis, we further bypass working on the linearized field equations.

Instead, we extract mass spectra and Stueckelberg structure from the linearized gauge

transformations. This is because the linearized field equation and hence the quadratic

part of action for massless spin-s field are uniquely determined by the spin-s gauge

symmetries.

• We recast the spectral analysis in terms of a pair of first-order differential operators.

They play the role of raising and lowering operators. The associated Sturm-Liouville

problem is factorized into quadratic product of these operators, akin to the super-

symmetric quantum mechanics Hamiltonian.

• We associate the origin of partially massless higher-spin fields to Sturm-Liouville

problems with non-unitary boundary conditions involving higher-order derivatives.

We obtain self-adjointness of the spectral analysis by extending the Hilbert space.

Physically, we interpret the newly introduced Hilbert space as boundary degrees of

freedom.

To highlight novelty and originality of our approach, we compare it with previous

works. There have been various approaches for higher-dimensional origin of higher-spin

fields. The work [16–18] proposed so-called ‘radial reduction’ that reduces a higher-spin

theory in (d+ 1)-dimensional Minkowski spacetime to that in d-dimensional (A)dS space-

time. This approach describes one-to-one correspondence between flat and (A)dS interac-

tion vertices but does not guarantee consistency of reduced theory as interacting higher-spin

theory is not known in flat space. Our approach starts from higher-spin gauge theory in

(A)dSd+2 space and compactifies it to (A)dSd+1 space. Both theories are well-defined. The

work [8] proposes to decompose the higher-spin representations of so(d+ 1, 2) in terms of

higher-spin representations of so(d, 2), viz. decomposing (A)dSd+2 space to foliation leaves
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of (A)dSd+1. While it takes an advantage of the discrete spectrum of these unitary repre-

sentations, this approach is rather limited for not having a tunable Kaluza-Klein parameter

(such as α in our approach) that specifies compactification size or with a set of boundary

conditions that yields the requisite mass spectrum. In particular, it does not give rise to

massless or partially massless higher-spin fields in (A)dSd+1 space. In our approach, we

have both of them. We summarize more specifics of these comparisons in section 8.5.

The rest of this paper is organized as follows. In section 2, we start with the spin-one

waveguide in flat space. We emphasize that the Kaluza-Klein compactification manifests

the Stueckelberg structure and consequent Higgs mechanism by combining various polar-

ization components. We also show that the consistency of equations of motion or of gauge

transformations restricts possible set of boundary conditions among various components

of spin-one field. In section 3, we explain how the Kaluza-Klein compactification works

for (A)dS space. We demonstrate that the so-called Janus geometry provides conformal

compactification of (A)dSd+2 space down to (A)dSd+1 space, and refer to it as AdS waveg-

uides. On this geometry, we study mass spectra for spin-one, spin-two and spin-three

fields in section 4, 5 and 6, respectively. We explain in detail how the spectral analysis of

equations of motion and of gauge transformations fit consistently each other, and confirm

that, in lower dimensions and at linearized level, the gauge transformations are sufficient

to uniquely fix the equations of motion. We show that a variety of boundary conditions

are possible and rich pattern of Higgs mechanism and mass spectra are obtained from

them. In particular, we show that, in addition to fully massive higher-spin fields, massless

and partially massless(PM) fields on (A)dS can be realized. For the latter, we show that

they arise from higher-derivative boundary conditions (HDBCs) and that such boundary

conditions can arise for spin two or higher. A simple example is considered in section 7 to

provide the physical meaning of the higher derivative boundary conditions and we provide

the intuitive picture why non-unitary representation appears by reduction. All procedure

extend to spin-s in section 8. In section 9, we argue that isotropic Lifshitz interface of

O(N) Heisenberg magnet or Gross-Neveu model is the simplest dual conformal field theory

which exhibits the (inverse) breaking of global higher-spin symmetries. Section 10 discusses

various open issues for further investigation. Appendix A summarizes our conventions for

the AdS space. The so(d, 2)-modules is briefly reviewed in appendix B. The non-abelian

AdS waveguide method via the Kaluza-Klein compactification from (A)dSd+k to (A)dSd
for k ≥ 2 is demonstrated in appendix C.

2 Flat space waveguide and boundary conditions

The salient feature of our approach is to compactify AdSd+2 space to AdSd+1 space times an

open internal manifold with boundaries. A complete specification of the compactification

requires to impose a suitable set of boundary condition at each boundary, which in turn

uniquely determine the mass spectrum in AdSd+1. The choice of boundary condition

provides a new, tunable parameter in addition to the size of internal manifold that features

the conventional compactification, triggering the (inverse) Higgs mechanism.
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2.1 Kalauza-Klein mode expansion

To gain physics intuition, we first warm up ourselves with the electromagnetic — massless

spin-one — waveguide in (d + 2)-dimensional flat spacetime with two boundaries, paying

particular attention to relations between boundary conditions and spectra for fields of

different spins. The flat spacetime is R1, d × IL, where interval IL ≡ {0 ≤ z ≤ L}. We

decompose the (d+ 2)-dimensional coordinates into parallel and perpendicular directions,

xM = (xµ, z), and the (d+ 2)-dimensional spin-one field to a spin-one field and a spin-zero

field in (d+ 1) dimensions, AM = (Aµ, φ). The equations of motions are decomposed as

∂M FMν = ∂µ Fµν − ∂z(∂νφ− ∂z Aν) = 0 , (2.1)

∂M FMz = ∂µ (∂µ φ− ∂z Aµ) = 0 , (2.2)

while the gauge transformations are decomposed as

δ Aµ = ∂µ Λ , δ φ = ∂z Λ . (2.3)

We note that both the equations of motion and the gauge transformations manifest the

structure of Stueckelberg system [14]. Recall that the Stueckelberg Lagrangian of massive

spin-one vector field is given by

L = −1

4
FµνF

µν +
1

2
∂µ φ∂

µ φ+mAµ

(m
2
Aµ − ∂µ φ

)
, (2.4)

which is invariant under the Stueckelberg gauge transformations

δ Aµ = ∂µ λ and δ φ = mλ . (2.5)

The field φ is referred to as the Stueckelberg spin-zero field. This field is redundant for

m 6= 0 because it can be eliminated by a suitable gauge transformation. In the massless

limit, m → 0, the Stueckelberg system dissociate into a spin-one gauge system and a

massless spin-zero system.

Inside the waveguide, the (d + 2)-dimensional spin-one field AM is excited along the

z-direction. The field can be mode-expanded, and expansion coefficients are (d + 1)-

dimensional spin-one and spin-zero fields of various masses. Importantly, mode functions

can be chosen from any complete set of basis functions. It is natural to choose them by

the eigenfunctions of ∆ := − (∂z)
2 with a prescribed boundary condition that ensures the

self-adjointness.

Inside the waveguide, the mode functions of the gauge parameter Λ should be chosen

compatible with the mode functions of the spin-one field AM . Combining the two gauge

variations eq. (2.3), we learn that the mode functions ought to be related to each other as

∂z (mode function of spin-one field Aµ(x, z)) ∝ (mode function of spin-zero field φ(x, z)) .

(2.6)

Being a local expression, this relation must hold at each boundaries as well.

It would be instructive to understand what might go wrong if, instead of the re-

quired eq. (2.6), one imposes the same boundary conditions for both Aµ and φ, such

– 6 –
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as zero-derivative (Dirichlet) or one-derivative (Neumann) boundary conditions. Sup-

pose one adopts the zero-derivative (Dirichlet) boundary condition for both fields. From

Aµ(z)|z=0, L = 0, φ(z)|z=0,L = 0 and from the field equation of φ, eq. (2.2), it follows that(
∂µ ∂µ φ(z)− ∂µ ∂z Aµ(z)

)∣∣∣
z=0, L

= −∂µ ∂z Aµ(z)|z=0, L = 0 , (2.7)

and hence ∂z Aµ(z)|z=0,L = 0. But Aµ satisfies second-order partial differential equation, so

these two sets of boundary conditions — Aµ(z)|z=0, L = 0 and ∂z Aµ(z)|z=0,L = 0 — imply

that Aµ(z) must vanish everywhere. Likewise, φ satisfies a first-order differential equation

eq. (2.1), so the two sets of boundary conditions imply that φ(z) vanishes everywhere as

well. One concludes that there is no nontrivial field excitations satisfying such boundary

conditions. We remind that this conclusion follows from the fact that these boundary

conditions do not preserve the relation eq. (2.6).

The most general boundary conditions compatible with the relation eq. (2.6) restrict

the form of boundary conditions for spin-one and spin-zero fields. For example, if we impose

the Robin boundary condition for the spin-zero field,M(∂z)φ|z=0,L := (a∂z+b)φ|z=0,L = 0

where a, b are arbitrary constants, the relation eq. (2.6) imposes the boundary condition

for the spin-one field as M ∂z Aµ|z=0, L = 0. Modulo higher-derivative generalizations, we

have two possible boundary conditions: a = 0, b 6= 0 corresponding to the vector boundary

condition and a 6= 0, b = 0 corresponding to the scalar boundary condition. Hereafter, we

analyze each of them explicitly.

2.2 Vector boundary condition

We may impose one-derivative (Neumann) boundary condition on the spin-one field

Aµ(x, z) and zero-derivative (Dirichlet) boundary condition on the spin-zero field φ(x, z)

at z = 0, L. The corresponding mode expansion for Aµ and φ reads

Aµ(z) =

∞∑
n=0

A(n)
µ cos

(nπ
L

z
)

and φ(z) =

∞∑
n=1

φ(n) sin
(nπ
L

z
)
, (2.8)

so the field equations eq. (2.1) and eq. (2.2) are also expanded in a suggestive form

∞∑
n=0

cos
(nπ
L

z
) [
∂µ F (n)

µν −
(nπ
L

)( nπ
L
A(n)
ν + ∂ν φ

(n)
)]

= 0 , (2.9)

∞∑
n=1

sin
(nπ
L

z
)
∂µ
( nπ
L

A(n)
µ + ∂µ φ

(n)
)

= 0 . (2.10)

The mode functions sin(nπz/L) for n = 0, 1, . . . form a complete set of the orthogonal

basis for square-integrable functions over IL, so individual coefficient in the above equa-

tions ought to vanish. The zero-mode n = 0 is special, as only the first equation is

nonempty and gives the equation of motion for massless spin-one field. All Kaluza-Klein

modes, n ≥ 1, satisfies the Stueckelberg equation of motion for massive spin-one field2 with

2For Kaluza-Klein compactification of flat spacetime, the Stueckelberg structure of higher-spin fields was

first noted in [9, 10].
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mass mn = nπ/L. The second equation follows from divergence of the first equation, so

just confirms consistency of the prescribed boundary conditions. In the limit L → 0, all

Stueckelberg fields become infinitely massive. As such, there only remains the massless

spin-one field A
(0)
µ with associated gauge invariance. Also, there is no spin-zero field φ(0),

an important result that follows from the prescribed boundary conditions. Intuitively, A
(0)
µ

remains massless and gauge invariant, so Stueckelberg spin-zero field φ(0) is not needed.

Moreover, the spectrum is consistent with the fact that this boundary condition ensures

no energy flow across the boundary z = 0, L.

The key observation crucial for foregoing discussion is that the same result is obtain-

able from Kaluza-Klein compactification of gauge transformations eq. (2.3). The gauge

transformations that preserve the vector boundary conditions can be expanded by the

Fourier modes:

Λ =
∞∑
n=0

Λ(n) cos
(nπ
L

z
)
. (2.11)

The gauge transformations of (d+ 1)-dimensional fields read

δ A(n)
µ = ∂µ Λ(n) (n ≥ 0) and δ φ(n) = −nπ

L
Λ(n) (n ≥ 1) . (2.12)

We note that the n = 0 mode is present only for the gauge transformation of spin-one field.

This is the gauge transformation of a massless gauge vector field. We also note that gauge

transformations of all higher n = 1, 2, · · · modes take precisely the form of Stueckelberg

gauge transformations. Importantly, the Stueckelberg gauge invariance fixes quadratic part

of action as the Stueckelberg action for a tower of Proca fields with masses mn = nπ/L,

(n = 1, 2, · · · ).
The fact that normal modes and their mass spectra are extractible equally well from

the linearized equations of motion and from the linearized gauge transformations is an

elementary consequence of Fourier analysis. At the risk of being pedantic, here we recall

this trivial fact. Consider fields AM (z) belonging to the Hilbert space of IL. Denote the

normal modes of the Sturm-Liouville operator −∂2
z as 〈z|n〉 and their completeness relation

as
∑

n〈z|n〉〈n|z′〉 = δ(z−z′). Varying the quadratic part of action with respect to the gauge

variation and integrating over z ∈ IL, we have

0 = 〈δL
(2)

δAM
|δAM 〉 =

∑
n

〈δL
(2)

δAM
|n〉〈n|δAM 〉 (2.13)

It is elementary to conclude from this equation that, projecting the gauge transformation

onto n-th mode, the equations of motion is projected to the same n-th mode. It follows

that the spectrum of gauge transformation δAM dictates the spectrum of equations of

motion δL(2)/δAM . The converse also follows straightforwardly. Note that this argument is

universal in the sense that it holds for any linear Sturm-Liouville system which is derivable

from action or energy functional. In particular, it holds for linearized higher-spins and

for curved internal space for which the operator −∂2
z is replaced by the most general

Sturm-Liouville operator −∇2
z and the measure dz is replaced by the covariant counterpart

dz
√
gzz. We will practice this elementary fact repeatedly throughout this paper.

– 8 –
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We can turn the argument around. Suppose we want to retain massless spin-one field

A
(0)
µ in (d+ 1)-dimensions, along with associated gauge invariance. This requirement then

singles out one-derivative (Neumann) boundary condition for Aµ. This and the divergence

for Aµ, in turn, single out zero-derivative (Dirichlet) boundary condition for φ. Clearly,

the massless fields are associated with gauge or global symmetries (namely invariances

under inhomogeneous local or rigid transformations). So, this argument shows that proper

boundary conditions for linearized field equations can be extracted just from linearized

gauge transformations.

2.3 Scalar boundary condition

Alternatively, one might impose no-derivative (Dirichlet) boundary condition to the spin-

one field Aµ and one-derivative (Neumann) boundary condition to the spin-zero φ. In this

case, the equations of motion, when mode-expanded, take exactly the same form as the

above except that the mode functions are interchanged:

∞∑
n=1

sin
(nπ
L

z
) [
∂µ F (n)

µν −
(nπ
L

)( nπ
L
A(n)
ν − ∂ν φ(n)

)]
= 0 , (2.14)

∞∑
n=0

cos
(nπ
L

z
)
∂µ
( nπ
L

A(n)
µ − ∂µ φ(n)

)
= 0 . (2.15)

Consequently, the zero-mode n = 0 consists of massless spin-zero field φ(0) only (A
(0)
µ is

absent from the outset). All Kaluza-Klein modes n 6= 0 are again Stueckelberg massive

spin-one fields with mass mn = nπ/L. In the limit L→ 0, these Stueckelberg field becomes

infinitely massive. Below the Kaluza-Klein scale 1/L, there only remains the massless spin-

zero field φ(0). Once again, this is consistent with the fact that this boundary condition

ensures no energy flow across the boundary.

Once again, the above results are also obtainable from the Kaluza-Klein compactifi-

cation of gauge transformations. For the gauge transformation that preserves the scalar

boundary condition, the gauge function can be expanded as

Λ(x, z) =
∞∑
n=1

Λ(n)(x) sin
(nπ
L

z
)
. (2.16)

With these modes, the gauge transformations of fields are

δ A(n)
µ = ∂µ Λ(n) (n ≥ 1) and δ φ(n) =

nπ

L
Λ(n) (n ≥ 0) . (2.17)

There is no n = 0 zero-mode for the gauge transformation, and so no massless spin-one

gauge field. The spin-zero zero-mode φ(0) is invariant under the gauge transformations.

We also note that the gauge transformations take the form of the Stueckelberg gauge

symmetries with masses mn = nπ/L.

Once again, we can turn the argument around. Suppose we want to retain massless

spin-zero field φ(0) in (d+ 1) dimensions. This then singles out one-derivative (Neumann)

boundary condition for φ. This and the divergence of Aµ equation of motion, in turn, put

the spin-one field Aµ to zero-derivative (Dirichlet) boundary condition.

– 9 –
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Summarizing,

• Kaluza-Klein spectrum is obtainable either from linearized field equations or from

linearized gauge transformations.

• Stueckelberg structure naturally arises from Kaluza-Klein compactification not only

for flat space but also for (A)dS space.

• Boundary conditions of lower-dimensional component fields (for example, Aµ and φ

from AM ) are correlated each other (for example as in eq. (2.6)).

Before concluding this section, we comment how these features are realized in string theory

in terms of the brane configurations and S-duality for d = 3 case.

2.4 D3-branes ending on five-branes and S-duality

The two possible boundary conditions discussed above are universal for all dimensions d.

When d = 3 and adjoined with maximal supersymmetry, the two boundary conditions are

related each other by the electromagnetic duality. This feature can be neatly seen in the

context of brane configurations in Type IIB string theory, studied most recently in [19, 20].

Consider a D3 brane ending on parallel five-branes (D5 or NS5 brane). From the

viewpoint of world-volume dynamics, the stack of five-branes provides boundary condi-

tions to flat space waveguide. The original low-energy degree of freedom of D3 brane is

four-dimensional N = 4 vector multiplet. In the presence of five-branes, half of sixteen

supersymmetries is broken. At the boundary, the four-dimensional N = 4 vector multi-

plet is split into three-dimensional N = 4 vector multiplet and N = 4 hypermultiplet. If

the five-brane were D5 brane, the zero-mode is the three-dimensional N = 4 hypermul-

tiplet. If the five-branes were NS5 brane, the zero-mode is the three-dimensional N = 4

vector multiplet. In terms of D3 brane world-volume theory, D5 brane sets “D5-type”

boundary condition: Dirichlet boundary condition on three dimensional vector multiplet

and Neumann boundary condition on three-dimensional hypermultiplet, while NS5 brane

sets “NS5-type” boundary condition: Neumann boundary condition on three dimensional

vector multiplet and Dirichlet boundary condition on three-dimensional hypermultiplet.

The Type IIB string theory has SL(2,Z) duality symmetry, under which the two brane

configurations are rotated each other. In terms of D3-brane world-volume dynamics, the

three-dimensional N = 4 vector multiplet and hypermultiplet are interchanged with each

other. This is yet another way of demonstrating the well-known mirror symmetry in

three-dimensional gauge theory, which exchanges two hyperKähler manifolds provided by

the vector multiplet moduli space MV and the hypermultiplet moduli space MH. Here,

following our approach, we see that they can also be derived entirely from the viewpoint

of gauge and global symmetries of component fields.

3 Waveguide in anti-de Sitter space

We now move to waveguide in (A)dS space. Here, we first explain how, starting from

AdSd+2 space, we can construct a “tunable” AdSd+1 waveguide — a waveguide which

retains so(d, 2) sub-isometry within so(d + 1, 2) isometry and which has a tunable size of

internal space.
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Consider the AdSd+2 space in the Poincaré patch with coordinates (t, xd−1, y, z) ∈
R1, d × R+:

ds(AdSd+2)2 =
`2

z2

(
−dt2 + dx 2

d−1 + dz2
)

+
`2

z2
dy2 = ds(AdSd+1)2 + gyydy

2 . (3.1)

The (d + 2)-dimensional Poincaré metric is independent of y, and remaining (d + 1)-

dimensional space is again Poincaré patch. Therefore, it appears that this foliation of

AdS metric would work well for the AdS compactification we look for. Actually, it is not.

The reason is as follows. Locally at each y, the isometry so(d, 2) is part of the original isom-

etry so(d+1, 2). However, globally, this does not hold in the Poincaré patch. The reason is

that so(d, 2) isometry transformation does not commute with translation along y direction

at the Poincaré horizon, z =∞. Moreover, when compactifying along the y-direction, the

(d+ 2)-dimensional tensor does not give rise to (d+ 1)-dimensional tensors. Consider, for

example, a small fluctuation of the metric. The tensor ∇µ hνy is dimensionally reduced to

∇µAν + δµz
1
z Aν , where Aµ ≡ hµy. The second term is a manifestation of non-tensorial

transformation in (d+ 1) dimensions.

In fact, any attempt of compactifying along an isometry direction faces the same diffi-

culties. As such, we shall instead foliate AdSd+2 into a semi-direct product of AdSd+1 hy-

persurface and an angular coordinate θ and Kaluza-Klein compactify along the θ-direction

over a finite interval:

ds(AdSd+2)2 =
1

cos2θ

[
ds(AdSd+1)2 + `2 dθ2

]
. (3.2)

Here, the conformal factor arises because we compactified the internal space along a direc-

tion which is globally non-isometric. This compactification bypasses the issues that arose

in the compactification eq. (3.1). In particular, (d+ 2)-dimensional tensors continue to be

(d+1)-dimensional tensors. For instance, ∇µ hνθ becomes ∇µAν−tanθ hµν+tanθ 1
`2
gµν φ.

In appendix C, under mild assumptions, we prove that the semi-direct product waveguide

eq. (3.2) is the unique compactification that preserves covariance of tensors.

We can explicitly construct the semi-direct product metric from appropriate foliations

of AdSd+2 space. We start from the Poincaré patch of AdSd+2 space and change bulk radial

coordinate z and another spatial coordinate y to polar coordinates, z = ρ cosθ, y = ρ sinθ.3

With this parametrization, the AdSd+2 space can be represented as a fibration of AdSd+1

space over the interval, θ ∈ [−π
2 ,

π
2 ]:

dsd+2
2 =

`2

z2

(
−dt2 + d~x 2 + dy2 + dz2

)
=

`2

ρ2 cos2θ

(
−dt2 + d~x 2 + dρ2 + ρ2 dθ2

)
=

1

cos2θ
(dsd+1

2 + `2 dθ2) . (3.3)

The boundary of AdSd+2 space is at θ = ±π
2 . From this foliation, we can construct the

AdS waveguide by taking the wedge −α ≤ θ ≤ α where α < π
2 . See figure 1. Note that

3The choice of spatial Poincaré direction “y” does not play a special role. It can be chosen from any of

the SO(d)/SO(d − 1) coset space. The semi-direct product structure can be straightforwardly generalized

to other descriptions of the (A)dS space. See appendix C.

– 11 –



J
H
E
P
1
1
(
2
0
1
6
)
0
2
4

Figure 1. Anti-de Sitter waveguide: the left depicts a slice of AdS space in Poincaré coordinates

(y, z). In polar coordinates (ρ, θ), the AdS boundary is located at θ = ±π/2(z = 0). The waveguide

is constructed by taking the angular domain −α ≤ θ ≤ +α for α < π/2, as in the middle figure.

For example, the waveguide for α = π/4 is given in the right figure.

this waveguide is embeddable to string theory: such geometry arises as a solution of Type

IIB supergravity for nontrivial dilaton and axion field configurations and is known as the

Janus geometry [21].

An important consequence of compactifying along non-isometry direction is the ap-

pearance of the conformal factor 1
cos2θ . One might try an alternative compactification

scheme of AdS tube by putting periodic boundary condition that identifies the two bound-

aries at θ = ±α. This is not possible. The vector ∂θ is not a Killing vector, so although

the metric at hyper-surfaces θ = ±α are equal, their first derivatives differ each other.

We reiterate that the AdS waveguide is the unique choice for tunable compactification.

Another consequence is that the integration measure of the waveguide is nontrivial

dVol(AdSd+2) = dVol(AdSd+1) dµd+2[θ] where dµd+2[θ] :=
dθ

(cos θ)d+2
(−α ≤ θ ≤ α).

(3.4)

Before concluding this section, we introduce the notations that will be extensively used

in later sections. We introduce the mode functions of AdS waveguide as follows:

Θs|S
n (θ) = n-th mode function for (d+ 1)-dimensional spin-s component that arise from

(d+ 2)-dimensional spin-S field upon waveguide compactification. (3.5)

Evidently, s = 0, 1, · · · , S. We also introduce the first-order differential operators  Ln
(n ∈ Z) of Weyl scaling weight n in the Hilbert space L2[−α, α] spanned by the above

mode functions:

 Ln =
1

`

(
∂θ + n tan θ

)
=

1

`
(cos θ)n∂θ(cos θ)−n . (3.6)

From the general covariance, it follows that all of ∂θ derivatives in the (A)dS wavegude

are in the combination of these operators. So we will use  Ln’s to express Kaluza-Klein

normal-mode equations, gauge transformations and boundary conditions. As we will see,

the Sturm-Liouville differential operator acting on spin-s field will carry the Weyl scaling

weight (d− 2s). The differential operator is quadratic in ∂θ, so acting on inner product of

spin-s fields defined by the integration measure in eq. (3.4),  Ln and Ld−2s−n are adjoint

each other.

A comment is in order. In this paper, we mainly concentrate on AdS waveguide. How-

ever, we can straightforwardly convert the results to the dS waveguide which we introduce
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in appendix C. The only technical difference is to replace (tan θ) to (− tanh θ), as can be

seen in table 5. The spectral differential operators in dS are obtainable by changing the

tangent functions in eq. (3.6).

4 AdS waveguide spectrum of spin-one field

In this section, we focus on the lowest spin field, spin-one, in AdS space and systematically

work out Kaluza-Klein compactification on the Janus waveguide. In section 2, we learned

that boundary conditions of different polarization fields are combined one another to fa-

cilitate the Stueckelberg mechanism. In our AdS compactification, where the semi-direct

product structure is the key feature, the choice of boundary conditions were left unspecified

a priori. Here, we develop methods for identifying the proper boundary conditions. As

this will be extended to higher-spin fields in later sections, modulo some technical com-

plications (some of which actually open new physics), we will explain in detail how the

boundary conditions are identifiable.

Through lower-spin examples, spin-one in this section and spin-two and spin-three in

later sections, we shall compare two alternative but equivalent methods at the level of

quadratic part of the action. One method is using the equations of motions, while the

other method is using the gauge transformations. As the equation of motion contains

increasingly complex structure for higher spin field (even at the linearized level), the first

method is less practical for adopting to general higher-spin fields. The second method is

relatively easier to deal with and can be applied to general higher spin fields. The second

method has one more important advantage: the dimensionally reduced equations of motion

can be derived by the second method. After compactification, the gauge transformations

become Stueckelberg transformation. The point is that the Stueckelberg symmetries are

as restrictive as the gauge symmetries (because the latter follows from the former, as we

will show below), so it completely fixes the equations of motion for all massive higher-spin

fields [15] to the same extent that the higher-spin gauge symmetries fix the equations of

motion of higher-spin gauge fields. Therefore, it suffices to use the gauge transformations for

obtaining information about the mass spectra of dimensionally reduced higher-spin fields.

For foregoing analysis, we use the following notations and conventions. The capital

letters M,N, · · · will be used to represent the indices of AdSd+2: they run from 0 to

d + 1. The greek letters µ, ν, · · · are the indices of AdSd+1 space: they run from 0 to

d. For the waveguide, index for the internal direction is θ. Therefore, M = {µ, θ}. The

barred quantities represent tensors in AdSd+2 space, while unbarred quantities are tensors

of AdSd+1. The AdS radius is denoted by `.

4.1 Mode functions of spin-one waveguide

We first consider the method using the equation of motion. The spin-one field equation in

AdSd+2 space decomposes into two polarization components:

sec2 θ ḡMN ∇M F̄µN = ∇ν Fµν −  Ld−2 ( L0Aµ − ∂µ φ) = 0, (4.1)

sec2 θ ḡMN ∇M F̄θN = ∇µ ( L0Aµ − ∂µ φ) = 0 , (4.2)
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where ĀM = (Āµ, Āθ) := (Aµ, φ). The (d + 1)-dimensional fields Aµ, φ can be mode-

expanded in terms of a complete set of mode functions Θ
s|1
n (θ), labelled by the mode

harmonics n = 0, 1, 2, · · · , on the interval θ ∈ [−α, α]:

Aµ =
∞∑
n=0

A(n)
µ Θ1|1

n (θ) and φ =
∞∑
n=0

φ(n) Θ0|1
n (θ). (4.3)

Mode functions are determined once proper boundary conditions are prescribed. As stated

above, our key strategy is not to specify boundary conditions at the outset. Rather, we

first require gauge invariance of various higher-spin fields and then classify all possible

boundary conditions that are compatible with such gauge invariances.

What we learn from section 2 is that boundary conditions, equivalently, mode functions

for Aµ and for φ must be related each other such that each term of eqs. (4.1) and (4.2) obey

the same boundary condition. Otherwise, as we learned in section 2, equations of motion

are accompanied with independent boundary conditions for each field and there would be

no degree of freedom left after dimensional reduction. Therefore, each term of eq. (4.1)

and eq. (4.2) must to be expanded by the same set of mode functions. We find that this

consistency condition leads to the relations(
0  Ld−2

 L0 0

)(
Θ1|1

Θ0|1

)
=

(
c01Θ1|1

c10Θ0|1

)
(4.4)

among the spin-one modes and the spin-zero modes. Here, c01, c10’s are in general complex-

valued coefficients. These equations reveals that the Sturm-Liouville (SL) operator −∆(s)

in eq. (4.1) that determines the mass spectra of spin-one field in (d + 1) dimensions is

factorized to a product of two first-order elliptic differential operators,

 Ld−2Θ0|1 = c01Θ1|1 and  L0Θ1|1 = c10Θ0|1
n . (4.5)

We first note that  L0 and  Ld−2 are adjoint each other with respect to the measure eq. (3.4)

for the field strength of (d+ 2)-dimensional spin-one field strength:∫
dµd+2[θ](cos2 θ)2A(θ)( Ld−2B(θ)) =

∫
dµd+2[θ](cos2 θ)2( L0A(θ))B(θ) (4.6)

provided we impose Dirichlet boundary conditions at θ = ±α. Acting  L0 and  Ld−2 to each

equations of eq. (4.5), respectively, one obtains two Sturm-Liouville systems for spin-one

and spin-zero modes,

spin-one Sturm-Liouville : ∆(1)Θ
1|1 := −( Ld−2  L0) Θ1|1 = −c11 Θ1|1 (4.7)

spin-zero Sturm-Liouville : ∆(0)Θ
0|1 := −( L0  Ld−2) Θ0|1 = −c00 Θ0|1 , (4.8)

with the property that the eigenvalues of respective spins are paired up

− c11 = −c10c01 = −c00 := λ2 . (4.9)

Here, we took into account that  L0 and  Ld−2 are conjugate to each other and hence the

eigenvalue λ2 is positive semi-definite. This also puts the coefficients c01, c10 pure imaginary,
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and the eigenvalues c00, c11 pure real. Hereafter, we label the eigenmodes in the ascending

order of their eigenvalues and label them by n = 0, 1, 2, · · · , viz. 0 ≤ λ2
0 ≤ λ2

1 ≤ λ2
2 ≤ · · · .

The relations eq. (4.4) are then the statement that the SL spectrum is doubly degenerate:

for a spin-zero mode Θ
0|1
m for some m there ought to be present a spin-one mode Θ

1|1
n for

some n proportional to  Ld−2Θ
0|1
m , and for a spin-one mode Θ

1|1
m for some m there ought to

be present a spin-zero mode Θ
0|1
n for some n proportional to  L0Θ

1|1
m . By the aforementioned

ordering of eigenmodes, we labeled the paired spin-zero and spin-zero modes by the same

index m = n = 0, 1, 2, · · · .
Stated differently, the two first-order elliptic operators  Ld−2,  L0 are not only conjugate

each other but also act as raising and lowering operators between spin-one and spin-zero

modes with doubly degenerate spectra

Θ
1|1
n

 Ld−2 ��  L0 with − λ2
n = c11

n = c00
n = c10

n c
01
n .

Θ
0|1
n

(4.10)

As such, we refer to eq. (4.4), equivalently, eq. (4.10) as “spectrum generating complex”

for spin-one field in AdSd+2 space.

In fact, we can attribute such double-degeneracy to a hidden supersymmetry of the

complex eq. (4.10).4 To see this, let us combine the two Sturm-Liouville problems for

spin-one and spin-zero modes into one Sturm-Liouville problem acting on two-component

modes

H

[
Θ

1|1
n

Θ
0|1
n

]
=

[
c11
n 0

0 c00
n

][
Θ

1|1
n

Θ
0|1
n

]
, where H =

[
− Ld−2  L0 0

0 − L0  Ld−2

]
. (4.11)

Let us also introduce two supercharges

Q =

[
0 0

i L0 0

]
and Q† =

[
0 i Ld−2

0 0

]
. (4.12)

Then, the two-component SL operator H in eq. (4.11) is nothing but

H = {Q,Q†} , {Q,Q} = {Q†,Q†} = 0 (4.13)

and the spectral relation eq. (4.4) is the statement that

Q

[
Θ

1|1
n

0

]
= ic10

n

[
0

Θ
1|1
n

]
and Q†

[
0

Θ
0|1
n

]
= ic01

n

[
Θ

0|1
n

0

]
, (4.14)

reinforcing the fact in eq. (4.6) that  Ld−2 and  L0 are conjugate to each other with respect

to the inner product defined by the measure eq. (3.4). Moreover, the double degeneracy

c11
n = c00

n is a consequence of the fact that the supercharges Q and Q† commute with the

SL operator H.

4Note that the hidden supersymmetry is unrelated to the N = 2 spacetime supersymmetry of ten-

dimensional Type IIB supergravity in which the Janus geometry is a classical solution that preserves half

of the supersymmetry.
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Returning to the Kaluza-Klein compactification, the relations eq. (4.4) allow to de-

compose the the (d+ 1)-dimensional field equations into spin-one and spin-zero modes as∑
n

[
∇µ F (n)

µν + c01
n (c10

n A(n)
ν − ∂ν φ

(n))
]

Θ1|1
n = 0∑

n

∇µ
[
c10
n A(n)

µ − ∂µφ(n)
]

Θ0|1
n = 0 . (4.15)

We see that these equations take precisely the form of Stueckelberg coupling, triggering

the Higgs mechanism for massive spin-one field in AdSd+1 space with mass

M2
n = −λ2

n . (4.16)

Recalling the flat space counterpart in section 2, it may so happen that there exist

massless — thus unHiggsed — spin-one or spin-zero fields in AdSd+1 space. This is actually

more interesting situation, so we would like to understand when and how this comes about.

Recalling that the SL eigenvalue is product of c10
n and c01

n and that the eigenvalue λ2
n is

positive semidefinite, there are three possible situations for the lowest eigenvalue:

(1) Doubly Degenerate Kaluza-Klein Modes: this case is when both of c01
0 , c

10
0 are nonzero.

This implies that the spin-zero eigenvalue c00
n and spin-one eigenvalue c11

n are nonzero

for all n = 0, 1, 2, · · · . By the spectrum generating relations eq. (4.5), none of the

corresponding modes Θ
0|1
n and Θ

1|1
n are annihilated by  L0 and  Ld−2, respectively. By

the double degeneracy, the eigenvalue for spin-zero −c00
n and the eigenvalue for spin-

one −c11
n are positive definite, and are paired up. The spectrum consists of doubly

degenerate Kaluza-Klein modes. A special case is when both c01
0 and c10

0 become zero.

In this case, the spectrum includes doubly degenerate ground modes. Nevertheless,

we shall distinguish these two cases.

double Kaluza-Klein modes:  L0Θ
1|1
0 6= 0,  Ld−2Θ

0|1
0 6= 0

double ground modes:  L0Θ
1|1
0 = 0,  Ld−2Θ

0|1
0 = 0

(4.17)

(2) Spin-One Ground Mode: this case is when c10
0 → 0 from the situation (1), leading to

 L0Θ
1|1
0 = 0. This means that Θ

1|1
0 is the ground mode with vanishing eigenvalue c11

0 =

0 of the spin-one SL operator  Ld−2  L0. All higher modes, Θ
1|1
n for n = 1, 2, · · · are

necessarily massive. On the other hand, spin-zero eigenmodes Θ
0|1
n for n = 0, 1, 2, · · ·

have positive eigenvalue c00
n > 0. By the double degeneracy property, they are paired

up with Θ
1|1
n for n = 1, 2, · · · . There is one spin-one ground mode of zero eigenvalue.

spin-one ground mode :  L0Θ
1|1
0 = 0, Θ

0|1
0 = 0. (4.18)

(3) Spin-Zero Ground Mode: this case is when c01 → 0 from the above situation (1),

leading to  Ld−2Θ
0|1
0 = 0. This means that Θ

0|1
0 is the ground mode with vanishing

eigenvalue c00
0 of the spin-zero SL operator  L0  Ld−2. All higher modes, Θ

0|1
n for n =

1, 2, · · · are necessarily massive. On the other hand, spin-one eigenmodes Θ
1|1
n for
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(b) (a) (c)

Figure 2. Various situations of double degeneracy between spin-zero (red color) and spin-one (blue

color) modes. The middle spectrum (a) depicts the situation (1) that both c010 and c100 coefficients

are nonzero. The spin-zero and spin-one modes are degenerate and have nonzero eigenvalues and so

have no ground mode. The left spectrum (b) depicts the situation (2) that c10 → 0. The spin-zero

modes have no ground mode, while the spin-one modes have ground mode. The right spectrum (c)

depicts the situation (3) that c01 → 0. The spin-one zero modes have no ground mode, while the

spin-one modes have ground mode. If both c010 and c100 are taken to zero, the spectrum is again

doubly degenerate, but now starting from the ground mode.

n = 0, 1, 2, · · · have positive eigenvalue c11
n > 0. By the double degeneracy property,

they are paired up with Θ
0|1
n for n = 1, 2, · · · . There is one spin-zero ground mode of

zero eigenvalue.

spin-zero ground mode : Θ
1|1
0 = 0,  Ld−2Θ

0|1
0 = 0. (4.19)

These situations are depicted in figure 2.

Remarks are in order. First, for the doubly degenerate modes of nonzero eigenvalues,

if one of them is normalizable then the other is normalizable automatically. Thus, not

only their eigenvalues but also their multiplicities also pair up. Second, the zero modes

are solutions of the first-order differential equations  L0Θ
1|1
0 = 0 and  Ld−2Θ

0|1
0 = 0 subject

to the Dirichlet boundary condition that render the two differential operators adjoint each

other. As the measure dµ[cos θ] is nonsingular and as the interval [−α,+α] is finite, the

existence of normalizable zero modes is always guaranteed.

We can classify the pattern of spectral pair-up by the elliptic index defined by

I(s)=1 ≡
∑
n

Multiplicity(Θ0|1
n )−

∑
n

Multiplicity(Θ1|1
n )

= dim Ker  Ld−2 − dim Ker  L0 (4.20)

– 17 –



J
H
E
P
1
1
(
2
0
1
6
)
0
2
4

Here, we used the fact that all Kaluza-Klein modes n > 0 are paired up and so do not

contribute to the index. In the situation (1), we have

c10
0 6= 0, c01

0 6= 0 : dim Ker L0 = 0 dim Ker  Ld−2 = 0

c10
0 = 0, c01

0 = 0 : dim Ker L0 = 1 dim Ker  Ld−2 = 1
(4.21)

In the situations (2) and (3), we have

c10
0 = 0 : dim Ker  L0 = 1 dim Ker  Ld−2 = 0

c01
0 = 0 : dim Ker  L0 = 0 dim Ker  Ld−2 = 1

(4.22)

So we see that spectral asymmetry is present whenever the elliptic index I(s)=1 is nonzero.

For the situation (1), the index is zero. For the situations (2) and (3), the index is nonzero.

Once again, the above results have close parallels to the supersymmetric quantum

mechanics. A vacuum |vac〉 of supersymmetric system preserves the supersymmetry if

Q|vac〉 = 0 or if Q†|vac〉 = 0. We see that the situations (2) and (3) preserves the

supersymmetry, while the situation (1) preserves the supersymmetry only if the ground

modes are present.

We can also determine the spectrum from the gauge invariances. In the waveguide, only

those gauge transformations that do not change the boundary condition would make sense,

viz. gauge fields and gauge transformation parameters ought to obey the same boundary

conditions and hence the same mode functions. So, we have

δAµ =
∑
n

δA(n)
µ Θ1|1

n (θ) =
∑
n

∂µ Λ(n) Θ1|1
n (θ) , (4.23)

δφ =
∑
n

δφ(n) Θ0|1
n (θ) =

∑
n

 L0 Λ(n) Θ1|1
n (θ) =

∑
n

c10
n Λ(n) Θ0|1

n (θ). (4.24)

We see that the relations eq. (4.10), which was obtained by the method using the equation of

motion, can now be derived by the variations eq. (4.24) and the Sturm-Liouville equations,

eqs. (4.7), (4.8).

Putting together the field equations and the gauge transformations of n-th Kaluza-

Klein modes, we have

∇µ F (n)
µν + c01

n [c10
n A(n)

ν − ∂ν φ(n)] = 0

∇µ[ c10
n A(n)

µ − ∂µφ(n)] = 0 (4.25)

δA(n)
µ = ∂µ Λ(n)

δφ(n) = c10
n Λ(n) .

We recognize these equations as precisely the Stueckelberg equations of motion and Stueck-

elberg gauge transformations that describe a massive spin-one gauge field (Proca field) in

AdSd+1 space. Comparing them with the standard form of Stueckelberg system, we also

identify the coefficients cn’s with the Stueckelberg coupling, viz. the mass of the Proca

field, c10
n = −c01

n = Mn for all n > 0.

The double degeneracy, as seen above, between spin-one and spin-zero fields is at the

core of the Higgs mechanism, much as in the flat space counterpart in section 2. The
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Stueckelberg coupling that realizes the Higgs mechanism follows from two ingredients.

First, Kaluza-Klein modes of spin-one and spin-zero are coupled together, such that the

second equation in eq. (4.15) follows from the first equation by consistency condition.

Second, the factorization property that the SL operator ∆(s) is a product of two first-order

elliptic differential operators  L0 and  Ld−2 implies that the spectrum of spin-one mode is

equal to the spectrum of spin-zero mode. The spin-zero mode provides the Goldstone mode

to the massive spin-one (Proca) field when the mass of spin-one is zero, and this picture

continues to hold in AdS space. A novelty for the AdS space is that the scalar field, despite

being a Goldstone mode, is massive.

The double degeneracy and hence the Higgs mechanism breaks down for the ground

mode. From eq. (4.15), we see that c01
n , c

10
n are the Stueckelberg coupling parameters.

For the ground modes, either c01
0 , c10

0 or both is set to zero and so the corresponding

Stueckelberg couplings vanish. In terms of the hidden supersymmetry, we see that inverse

of the Higgs mechanism takes place whenever the supersymmetry is unbroken.

4.2 Waveguide boundary conditions for spin-one field

Having identified the mode functions as well as raising and lowering operators relating them,

we are now ready to examine boundary conditions these mode functions must satisfy. To

simplify and systematize the analysis, we shall first concentrate on boundary conditions

which do not contain derivatives higher than first-order.5 In this case, all possible boundary

conditions can be related to all possible choice of mode functions with nontrivial ground

modes. This is because the ground modes eqs. (4.18), (4.19), which are valid everywhere

in the waveguide θ = [−α, α], trivially satisfy the zero-derivative (Dirichlet) boundary

condition and the one-derivative (Neumann) boundary condition, respectively, at θ = ±α.

Moreover, by an argument similar to the reasoning around eq. (2.7) in flat space, we see

that the situation in eq. (4.17) does not give rise to massless fields and that the situations

in eqs. (4.18), (4.19) do give rise to massless spin-one and spin-zero fields, respectively.

So, to have massless fields in AdSd+1 space, we can choose the boundary conditions as{
Θ1|1 |θ=±α = 0 ,  Ld−2 Θ0|1 |θ=±α = 0 Dirichlet

 L0 Θ1|1 |θ=±α = 0 , Θ0|1 |θ=±α = 0 Neumann
(4.26)

that give rise to massless spin-zero field and spin-one field, respectively, in AdSd+1 space.

The first corresponds to the situation that Θ0|1 is a zero mode belonging to Ker  Ld−2 and

the second case corresponds to the situation that Θ1|1 is a zero mode belonging to Ker  L0.

For each of the above two boundary conditions, the mass spectrum is determined

by the Sturm-Liouville problem eq. (4.8). We emphasize again that the above choice

of boundary conditions put all Kaluza-Klein modes to Stueckelberg coupling, leading to

Higgsed spin-one fields. The ground mode of Dirichlet boundary condition, Θ
1|1
0 (±α) = 0

has vanishing mass for spin-zero field and there is no massless spin-one field. The ground

5For s ≥ 2, as we shall show in next section, boundary conditions necessarily involve higher derivative

terms in order to accommodate all possible mass spectra of higher-spin fields. In section 7, we discuss in

detail origin and physical interpretation of higher-derivative boundary conditions (HDBC).
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Figure 3. Mass spectrum (Mn, s) for spin-one field in AdS waveguide. The left is for Dirichlet

boundary condition to spin-one component, and the right is for Dirichlet boundary condition to

spin-zero component. The red squares are the ground modes, while the blue circles are the Kaluza-

Klein modes. Circles inside the same rectangle have the same eigenvalue and form a Stueckelberg

system of massive spin-one field.

mode of Neumann boundary condition,  L0Θ
1|1
0 (±α) = 0 has vanishing mass for spin-one

field and there is no massless spin-zero field. So, we see that the two possible boundary

conditions eq. (4.26) are precisely the AdS counterparts of “vector” and “scalar” boundary

conditions for flat space waveguide studied in section 2. We summarize the spectrum of

each boundary conditions in figure 3.

Our result for the ground modes, which comprises of massless spin-one or spin-zero

fields, fits perfectly to the so(d, 2) representation theory of AdSd+1 space. The set of

normalizable solutions to the free field equation form a so(d, 2)-module.6 Consider an

irreducible representation D(∆, s) of so(d, 2). The conformal weight ∆ (the Casimir of

so(2) subalgebra) is related to the mass-squared of spin-s field by

m2
spin−0 `

2 = ∆ (∆− d) , m2
spin−1 `

2 = ∆ (∆− d) + (d− 1) . (4.27)

The ground modes of Dirichlet and Neumann boundary conditions are massless spin-zero

and spin-one fields, respectively. We see from eq. (4.27) that each of them corresponds

to the so(d, 2) representations, D (d, 0) and D (d− 1, 1), respectively. Moreover, both are

irreducible parts of the reducible Verma so(d, 2)-module V (d− 1, 1), viz.

V (d− 1, 1) = D (d− 1, 1)︸ ︷︷ ︸
Neumann

⊕D (d, 0)︸ ︷︷ ︸
Dirichlet

. (4.28)

The pattern that ground mode comes from the irreducible representations of reducible

Verma module continues to hold for higher-spin fields as well, and is an integral part of

our main results in this paper.

Summarizing, from Kaluza-Klein compactification of spin-one field in AdSd+2 space,

we take following lessons.

• The mode functions of different spins in AdSd+1 space are related to each other, which

permits Stueckelberg structure. For spin-one, this relation is shown in eq. (4.10).

6We summarize our convention of the so(d, 2)-module and representations in appendix B.
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• It is known that free part of Stueckelberg equation and action are uniquely deter-

mined by Stueckelberg gauge transformations. Therefore, we could derive the lower-

dimensional equations of motion just from consideration of the lower-dimensional

gauge transformations.

5 Waveguide spectrum of spin-two field

In this section, we extend the analysis to spin-two field in the AdS waveguide. The idea is

basically the same as the spin-one case, but the result turns out more interesting for the

ground modes. We shall present the analysis as closely parallel as possible to the spin-one

case and highlight salient differences that begin to show up for spin two and higher.

5.1 Mode functions of spin-two waveguide

We begin with the method based on the equation of motion. The Pauli-Fierz equation of

motion for a massive spin-two field in AdSd+2 is given by

KMN (h̄)− (d+ 1) (2 h̄MN − ḡMN h̄)−M2 (h̄MN − ḡMN h̄) = 0 , (5.1)

where M2 is the mass-squared, ḡMN is the metric of AdSd+2 space, and KMN (h̄) is the

spin-two Lichnerowicz operator:

KMN (h̄) = �h̄MN − (∇L∇N h̄ML +∇L∇M h̄NL) + ḡMN∇K∇Lh̄KL +∇M∇N h̄− ḡMN�h̄ ,
(5.2)

where h̄ denotes for the trace part, ḡMN h̄MN . After the compactification, the (d + 2)-

dimensional spin-two field is decomposed to (d + 1)-dimensional spin-two, spin-one, and

spin-zero component fields, respectively:

hµν = h̄µν +
1

d− 1
gµν h̄θθ , h̄µθ = Aµ , h̄θθ = φ . (5.3)

Note that the spin-two field hµν is defined by the linear combination of h̄µν and h̄θθ.
7

The massless spin-two equation of motion in AdSd+2 space decomposes into equations

of motion for the component fields (hµν , Aµ, φ) in AdSd+1 space:

Kµν(h)− d (2hµν − gµν h) +  Ld−2  L−2 (hµν − gµν h)

− Ld−2 (∇µAν +∇νAµ − 2gµν∇ρAρ) +
d

d− 1
gµν  Ld−2  Ld−3 φ = 0 , (5.4)

∇µ Fµν − 2 dAν −  L−2 (∇µ hµν −∇ν h)− d

d− 1
 Ld−3∇ν φ = 0 , (5.5)

�φ−
(
d+ 1

d− 1
 L−1  Ld−3 + d+ 1

)
φ− 2  L−1∇µAµ +  L−1  L−2 h = 0 , (5.6)

7The equations of motion have cross terms between h̄ and ∇2φ. This linear combination removes such

cross terms. This specific combination is also the linear part of canonical metric in the original Kaluza-Klein

compactification, ḡµν = eφ/(d−1) gµν .
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where h is the trace part, gµνhµν , in AdSd+1 space. The mode expansion of (d + 1)-

dimensional spin-two, spin-one and spin-zero component fields reads

hµν =
∑
n

h(n)
µν Θ2|2

n (θ) , Aµ =
∑
n

A(n)
µ Θ1|2

n (θ) , φ =
∑
n

φ(n) Θ0|2
n (θ) . (5.7)

From eqs. (5.4), (5.5), (5.6), we again expect relations among mode-functions which can

be summarized by the following two first-order coupled differential equations(
0  Ld−2

 L−2 0

)(
Θ

2|2
n

Θ
1|2
n

)
=

(
c12
n Θ

2|2
n

c21
n Θ

1|2
n

)
(5.8)

(
0  Ld−3

 L−1 0

)(
Θ

1|2
n

Θ
0|2
n

)
=

(
c01
n Θ

1|2
n

c10
n Θ

0|2
n

)
. (5.9)

Here, cn’s are pure imaginary coefficients. Compared to the previous section, we now have

two sets of raising and lowering operators, one for connecting spin-zero and spin-one and

another for connecting spin-one and spin-two, respectively. Accordingly, we have two pairs

of Sturm-Liouville problems. The eq. (5.8) leads to the first set of Sturm-Liouville problems

for spin-two and spin-one, respectively:

 Ld−2  L−2 Θ2|2
n = c21

n c12
n Θ2|2

n = −M2
n Θ1|2

n ,

 L−2  Ld−2 Θ1|2
n = c12

n c21
n Θ1|2

n = −M2
n Θ1|2

n . (5.10)

The eq. (5.9) leads to the second set of Sturm-Liouville problems for spin-one and spin-zero,

respectively:

 Ld−3  L−1 Θ1|2
n = c10

n c01
n Θ1|2

n ,

 L−1  Ld−3 Θ0|2
n = c01

n c10
n Θ0|2

n . (5.11)

The two sets of equations appear overdetermined, as the spin-one mode function Θ
1|2
n is

the eigenmode that participate in two separate Sturm-Liouville problems. However, it can

be shown that the two Sturm-Liouville problems are actually related each other upon using

the relations

 Lm  Ln −  Ln−1  Lm+1 = (n−m− 1) . (5.12)

This also leads to relations to the two sets of eigenvalues that appear in the two separate

sets of Sturm-Liouville problems.

c10
n c

01
n = c21

n c
12
n − (d− 1). (5.13)

It should be noted that the difference between spin-two eigenvalues and spin-one eigenval-

ues is linearly proportional to the spacetime dimensions (measued in unit of the AdSd+1

curvature scale).
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We can summarize the coupled Sturm-Liouville problems by the following spectrum

generating complexes

Θ
2|2
n

 Ld−2 ��  L−2 : −M2
n,2|2 = −λ2

n = c21
n c

12
n

Θ
1|2
n

 Ld−3 ��  L−1 : −M2
n,1|2 = −(λ2

n + d− 1) = c10
n c

01
n

Θ
0|2
n

(5.14)

As in the spin-one counterpart, these complexes, defined by raising and lowering operators

between (d + 1)-dimensional fields of adjacent spins, are precisely the structure required

by the Stueckelberg mechanism of spin-two field.8 If Mn, 2|2 and Mn, 1|2 were nonzero, the

corresponding modes among different spin fields combine and become the Stueckelberg

spin-two system. From these complexes, we can draw two pieces of information. First, as

anticipated from the flat space intuition, the Stueckelberg mechanism would work between

two adjacent spin fields, one for spin-two and spin-one and another for spin-one and spin-

zero. Second, the relation eq. (5.13), which is already reflected in eq. (5.14), indicates that

the Stueckelberg mechanism actually involve the whole tower of component spin fields. In

the present case, this means that the spin-two, spin-one and spin-zero fields are all involved

in the Higgs mechanism.

Again, there are two special cases, vanishing Mn, 2|2 or vanishing Mn, 1|2. As these are

important exceptional situations, leading to a new phenomenon involving so-called partially

massless spin-two fields, we will analyze them separately in section 5.2 with examples.

There is also a special case of these two, namely, simultaneously vanishing Mn, 2|2 and

Mn, 1|2. This case will lead to massless limit of all component spin fields.

We can also obtain eq. (5.14) from the method based on gauge invariances. The gauge

transformations in AdSd+1 space, with the gauge parameter ξ̄M = {ξµ, ξθ}, are decomposed

into components

δhµν = ∇(µ ξν) +
1

d− 1
gµν  Ld−2 ξθ ,

δAµ =
1

2
∂µ ξθ +

1

2
 L−2 ξµ , (5.15)

δφ =  L−1 ξθ .

We should stress that these component fields are in the basis of AdSd+1 fields that di-

agonalize them at linearized level. The gauge transformations given above are those in

this basis.

To retain the gauge invariances, the mode functions of gauge parameter must be set

the same as the mode functions of fields:

ξµ =
∑
n

ξ(n)
µ Θ2|2

n (θ) , ξθ =
∑
n

ξ
(n)
θ Θ1|2

n (θ) . (5.16)

8Note, however, Mn,1|2 is not related to the mass-like term of spin-one field in eq. (5.5). It is only that

Mn = Mn,2|2 is the mass of spin-two field in eq. (5.4).
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By substituting these to eq. (5.15) and comparing mode expansion in the gauge variations,

we see we can recover precisely the same raising and lowering operators as in eq. (5.14),

which was previously derived from the field equations eqs. (5.4), (5.5), (5.6).

After the mode expansion, the component field equations read

Kµν(h(n))− d
[
2h(n)

µν − gµν h(n)
]

+ c21
n c12

n

[
h(n)

µν − gµνh(n)
]

−c12
n

[
∇µA(n)

ν +∇νA(n)
µ − 2gµν∇ρA(n)

ρ

]
+ c01

n c
12
n

d

d− 1
gµνφ

(n) = 0 , (5.17)

∇µ F (n)
µν − 2 dA(n)

ν − c21
n ∇µ

[
h(n)

µν − gµν h(n)
]
− c01

n

d

d− 1
∇ν φ(n) = 0 , (5.18)

�φ(n) −
[
d+ 1

d− 1
c01
n c10

n + d+ 1

]
φ(n) − 2 c10

n ∇µA(n)
µ + c21

n c10
n h(n) = 0 . (5.19)

Their gauge transformations are

δh(n)
µν = ∇(µ ξ

(n)
ν) +

c12
n

d−1
gµν ξ

(n) , δA(n)
µ =

1

2
∂µ ξ

(n)+
c21
n

2
ξ(n)
µ , δφ(n) = c10

n ξ(n) . (5.20)

We see that this system, eqs. (5.17), (5.18), (5.19), (5.20), coincides precisely with the

spin-two Stueckelberg system in AdSd+1 space, once we redefine cn’s as

c12
n = −

√
2Mn, c

21
n =

Mn√
2
, c01

n = −

√
d

2(d−1)
(Mn

2+d−1), c10
n =

√
2(d−1)

d
(Mn

2+d−1).

Time and again, the linearized gauge invariances uniquely fix the linearized field equa-

tions or equivalently the quadratic part of action. Therefore, from the knowledge of lin-

earized gauge transformations eq. (5.20), we can fully reconstruct the linearized field equa-

tions eqs. (5.17), (5.18), (5.19). In practice, the gauge transformations are much simpler

to handle than the field equations. From now on, we shall analyze the spectrum primar-

ily using the linearized gauge invariances. Note that the modes with nonempty image of

raising operators or nonempty image of lowering operators always combine together and

undergo the Higgs mechanism for massive spin-two fields.

Before classifying possible boundary conditions, we summarize the Stueckelberg spin-

two system and the Goldstone mode decomposition pattern of it. For general values of the

masses, the Stueckelberg spin-two system describes the same physical degree of freedom as

a massive spin-two field, having the maximal number of longitudinal polarizations. This

is because the spin-one and spin-zero fields can be algebraically removed by the gauge

symmetries eq. (5.20), corresponding to the unitary gauge fixing. However, such gauge

fixing is not possible were if the masses take special values:

λ2
n = 0 and λ2

n = −(d− 1)

`2
. (5.21)

At these special mass values, the Stueckelberg system breaks into two subsystems which

can be deduced just from the gauge transformations. We now elaborate on this.

For the situation that λn = 0, the gauge transformations are

δ hµν = ∇(µ ξν) , δ Aµ =
1

2
∂µ ξ , δ φ =

1

`

√
2

d
(d− 1) ξ . (5.22)
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We see from the first transformation that the spin-two field ought to be massless gauge

field as it has the spin-two diffeomorphism invariance. We also see that the remaining two

equations precisely constitute the spin-one Stueckelberg system with m2 = 2 d/`2. This

implies that the Goldstone field of the massive spin-two is given by the massive spin-one

system, which in turn was formed by the Stueckelberg system of massless spin-one and

massless spin-zero fields.9

For the situation that λ2
n = −(d − 1)/`2, a subtlety arises as the coefficients c12

n and

c21
n are pure imaginary. Specifically, the relation eq. (5.8) implies that one of the two

mode functions Θ
1|2
n , Θ

2|2
n and corresponding field become pure imaginary. We are thus

led to redefine the mode functions Θ̃
1|2
n = ±iΘ

1|2
n and the fields Ãµ = ±i Aµ.10 The gauge

transformations now become

δhµν = ∇(µ ξν) +

√
2

d− 1

1

`
gµν ξ , δAµ =

1

2
∂µ ξ +

√
d− 1

2

1

2 `
ξµ , δφ = 0 . (5.23)

We see that the above redefinition does not alter the fact that the spin-two gauge transfor-

mations and spin-one gauge transformations are coupled each other. In fact, we recognize

that these are precisely the gauge transformations for the Stueckelberg system of partially

massless (PM) spin-two field [15]. We can always gauge-fix the spin-one field to zero, and

the remanent gauge symmetry coincides with the partially-massless (PM) spin-two gauge

symmetry [12, 13]:

δhµν = ∇µ∇ν λ−
1

`2
gµν λ , where λ = `

√
2

d− 1
ξ . (5.24)

Therefore, as the mass-squared hits the special value M2
n = −(d− 1)/`2, the Stueckelberg

system breaks into a spin-two partially-massless (PM) Stueckelberg system and a massive

spin-zero field of mass-squared m2 = (d+ 1)/`2, as given in eq. (5.19).

This spectral decomposition pattern perfectly fits to the reducibility structure of the

Verma so(d, 2)-module V(∆, 2) for spin-two field. For the special values of conformal

weights, ∆ = d and ∆ = d− 1, the Verma module becomes reducible and break into

V (d, 2) = D (d, 2)︸ ︷︷ ︸
massless s=2

⊕ D (d+ 1, 1)︸ ︷︷ ︸
massive s=1

,

V (d− 1, 2) = D (d− 1, 2)︸ ︷︷ ︸
partially massless s=2

⊕D (d+ 1, 0)︸ ︷︷ ︸
massive s=0

. (5.25)

Here, D (d, 2) and D (d− 1, 2) are the irreducible representations of massless and par-

tially massless states, respectively. Using the relation between the mass-squared and the

conformal weights11

m2
spin−1 `

2 = ∆ (∆− d) + (d− 1) and m2
spin−0, 2 `

2 = ∆ (∆− d) , (5.26)

9Note that the normalization of each field is not the standard form.
10In the path integral formulation, this amounts to choosing that the integration contour purely imaginary.
11Here, we define the mass-squared equal to the mass-squared in flat space limit. Therefore, it differs

from the mass-squared dictated by the Fierz-Pauli equations. See appendix B.
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type D(∆, s)so(d,2) field mass-squared

type I D(d+ 1, 1) massive Stueckelberg spin-one m2 = 2 d/`2

type II D(d+ 1, 0) massive spin-zero field m2 = (d+ 1) /`2

type III D( d, 2 ) massless spin-two m2 = 0

type IV D(d− 1, 2) partially-massless Stueckelberg spin-two m2 = − (d− 1) /`2

Table 1. The types of field involved in the inverse Higgs mechanism when a spin-two Stueckelberg

systems decompose into spin-two gauge field and Goldstone field. Type I and II are Goldstone fields

of spin-zero and spin-one. In AdS space, these Goldstone fields are massive. Type III is massless,

spin-two gauge field. Type IV is partially massless, spin-two gauge field.

one finds that D (d+ 1, 1) corresponds to the spin-one field with m2 = 2 d/`2, and

D (d+ 1, 0) corresponds to the spin-zero field with m2 = (d+ 1) /`2. This result exactly

matches with the spectral decomposition patterns we analyzed above.

Here, in table 1, we tabulate the four types of fields that appear at four special values

of masses, corresponding to the four irreducible representations that appear in eqs. (5.25).

They will be shown to arise as the ground modes of the Sturm-Liouville problems with

appropriate boundary conditions in section 5.2.

5.2 Waveguide boundary conditions for spin-two field

With the spectrum generating complex at hand, we now move to classification of possible

boundary conditions. In the spin-one counterpart, boundary conditions for different com-

ponent fields (spin-one and spin-zero in that case) were related one another. This feature

continues to hold for the spin-two situation. For instance, suppose we impose Dirichlet

boundary condition for the spin-one component field in AdSd+1, Θ1|2|θ=±α = 0. Then, the

spectrum generating complex eq. (5.14) immediately imposes unique boundary conditions

for other component fields:

 L−2 Θ2|2
n ∼ Θ1|2

n ,  L−2 Θ2|2|θ=±α = 0 ,

 Ld−3 Θ0|2
n ∼ Θ1|2

n ,  Ld−3 Θ0|2|θ=±α = 0 . (5.27)

Likewise, if we impose a boundary condition to one of the component fields, the spectrum

generating complex eq. (5.14) uniquely fixes the boundary conditions of all other component

fields. The simplest choice is to impose the Dirichlet boundary condition to one of the

component fields. As there are s + 1 = 3 component fields (spin-two, spin-one and spin-

zero), there are then three possible boundary conditions:12

B.C. 1: { Θ2|2| = 0 ,  Ld−2 Θ1|2| = 0 ,  Ld−2  Ld−3 Θ0|2| = 0 }
B.C. 2: {  L−2 Θ2|2| = 0 , Θ1|2| = 0 ,  Ld−3 Θ0|2| = 0 }
B.C. 3: {  L−1  L−2 Θ2|2| = 0 ,  L−1 Θ1|2| = 0 , Θ0|2| = 0 }

, (5.28)

12Note that the first and the third conditions are higher-derivative boundary conditions(HD BC). HD BC

is not self-adjoint in the functional space L2, but can be made self-adjoint in a suitably extended functional

space. We will explain this in section 7.

– 26 –



J
H
E
P
1
1
(
2
0
1
6
)
0
2
4

where Θ| is a shorthand notation for the boundary values of mode functions, Θ|θ=±α. We

reiterate that the boundary conditions on each set are automatically fixed by the spectrum

generating complex eq. (5.14). We now examine mass spectra and mode functions for each

of the three types of boundary conditions, eq. (5.28).

To deliver our exposition clear and explicit, we shall analyze in detail for d = 2, viz.

compactification of AdS4 to AdS3 times the Janus wedge, where the mode solutions of the

Sturm-Liouville problem, eq. (5.14), are elementary functions:

Θ2|2 =

{
sec θ (tan θ cos(znθ)− zn sin(znθ)) , odd parity

sec θ (tan θ sin(znθ) + zn cos(znθ)) , even parity
(5.29)

Θ1|2 =

{
sec θ sin(znθ) , odd parity

sec θ cos(znθ) , even parity
(5.30)

Θ0|2 =

{
sec θ sin(znθ) , odd parity

sec θ cos(znθ) , even parity
(5.31)

with z2
n = λ2

n + 1. Note that the Sturm-Liouville equation and the boundary condition are

symmetric under the parity θ → −θ, so the modes are also classifiable as either odd or

even under the parity.

We begin our analysis with B.C. 1. Substituting the above mode functions to the

B.C. 1, we get the same expression for spin-two and spin-one component fields except the

condition that the parity of mode functions must take opposite values:{
sec θ (tan θ cos(znθ)− zn sin(znθ)) |θ=±α , odd Θ2|2 and even Θ1|2

sec θ (tan θ sin(znθ) + zn cos(znθ)) |θ=±α , even Θ2|2 and odd Θ1|2 . (5.32)

We also get the boundary condition for spin-zero component Θ0|2 as{
zn sec θ (tan θ cos(znθ)− zn sin(znθ)) |θ=±α, odd Θ(0|2)

zn sec θ (tan θ sin(znθ) + zn cos(znθ)) |θ=±α, even Θ(0|2) . (5.33)

We note that, modulo the overall spectral factor zn, this spin-zero boundary condition is

the same as the boundary condition eq. (5.32). This is not accidental but a consequence

of the spectrum generating complex eq. (5.14) and the boundary condition eq. (5.27).

In general, solutions for each boundary condition, zn, depend on the waveguide size

parameter, α. They are the AdS-counterpart of flat space compactification volume, and

so zn and λn would blow up as α is sent to zero. They also correspond to the “Kaluza-

Klein modes”. For these modes, mode functions of different spin component fields couple

together and form spin-two Stueckelberg system with mass-squared, M2
n = z2

n − 1.

There are, however, two special limits that are independent of α, zn = 1 and zn = 0.

They correspond to “ground modes” and have interesting features that are not shared by

the Kaluza-Klein modes. First, masses of the ground modes are equal to the special masses

eq. (5.21) at which the unitary gauge-fixing ceases to work and the Stueckelberg system

decomposes into subsystems. Second, mode function of some spin components are absent.

For zn = 1, the spin-two field is absent as Θ2|2 = 0 in this case. The spin-one and spin-zero
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Figure 4. Spectral pattern for three types of Dirichlet conditions, B.C.1, B.C.2 and B.C.3 from

left to right. The spin contents of each excitation level n = 0, 1, 2, · · · are depicted. Each point

represents one mode: squares are from ground modes, while circles are from Kaluza-Klein modes.

Points inside the same rectangle have the same eigenvalues and form Stueckelberg system. It is

worth comparing this with the pattern for arbitrary higher-spin in figure 7.

fields combine and form the Stueckelberg spin-one system of type I. For zn = 0, only

massive spin-zero field is present because zn = 0 is not a solution of boundary conditions

eq. (5.32) or corresponding mode function is 0. This spin-zero field is of type II.

Completing the analysis for all possible boundary conditions, we find the following

spectrums of ground modes:

B.C. 1: type I and type II

B.C. 2: type II and type III

B.C. 3: type III and type IV

(5.34)

We see that B.C.1 keeps mostly spin-zero, B.C.3 keeps mostly spin-two, while B.C.2 keeps

spin-zero and spin-two. The complete spectrum of each set of boundary conditions is

summarized in figure 4.

The ground mode spectra associated with B.C. 3 deserve further elaboration, as

they in fact describe a non-unitary system. First, it is non-unitary because the mass-

squared is below the Breitenlohner-Freedman bound of spin-two field in AdSd+1 space. In

section 7, we will explain Kaluza-Klein origin of this non-unitarity. Second, norms of some

mode functions are negative-definite, implying that the Hilbert space has the structure

of indefinite metric, leading classically to unbound energy and instability and quantum

mechanically to negative probability. Explicitly, for the mode functions{
Θ

2|2
1 = N5 sec2 θ type III

Θ
2|2
0 = N3 sec θ tan θ , Θ

1|2
0 = N4 tan θ type IV ,

(5.35)

the norms of Θ
2|2
0 and Θ

2|2
1 are −2αN3

2 and − 2
tanαN5

2 and hence negative-definite for all

choices of α. Such negative norms indicate that the higher-spin fields associated with these

ground modes in B.C.3 have a wrong sign for their kinetic term. We will further confirm

this more directly in subsection 7.2, and offer intuitive explanations of them in terms of

extra boundary degrees of freedom needed for extending the indefinite Hilbert space to a

definite Hilbert space.
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As the waveguide size α tends to π/2, the boundary surface of the waveguide ap-

proaches the timelike asymptotic boundary of the AdSd+2 space. In other words, the

Janus wedge decompactifies to the AdSd+2 space. In this limit, though, the mass spectrum

for each boundary conditions does not necessarily gets to the spectrum of massless spin-two

field in AdSd+2 space. The reason is that some of the boundary conditions we choose are

singular in this limit as the associated mode function becomes ill-defined. Take for instance

the mass spectrum for B.C. 2. It contains the massless spin-two ground mode as well as

spin-zero ground mode whose normalized mode functions are{
Θ

0|2
0 = N1 sec θ , type II ,

Θ
2|2
0 = N2 sec2 θ , type III ,

N1 =
1√
2α
, N2 =

√
1

2 tanα
. (5.36)

These ground-mode functions are not normalizable in AdSd+2 space: the normalized mode

functions disappears as N2 vanishes in the decompactification limit. This explains why

there is no massless spin-two field in the “dimensional degression” studied in ref. [8]. In

section 8.5, we will show that, for arbitrary spacetime dimension d and spin s of higher-spin

field, the mass spectrum of “dimensional degression” spectrum is the spectrum of B.C.1

in the decompactification limit.

Summarizing,

• The mode functions of different spins in AdSd+1 are related to each other by the

spectrum generating complex eq. (5.14), whose structure is uniquely fixed by the

consideration of Kaluza-Klein compactification of higher-spin gauge transformations.

• At special values of masses, the Stueckelberg spin-two system decomposes into irre-

ducible representations of massless or partially massless spin-two fields and massive

Goldstone fields. The ground modes of Dirichlet boundary conditions eq. (5.28) are

precisely these irreducible representations in table 1 at the special mass values.

6 Waveguide spectrum of spin-three field

In this section, we further extend our analysis to spin-three field. This is not a mechanical

extrapolation of lower spins. Compared to the situation of lower spins, for spin-three or

higher, a new technical complication begins to show up: the spin-three gauge parameter

needs to be traceless, ḡµν ζµν = 0. As we will demonstrate below, this complication forces

us to consider appropriate linear combinations of gauge parameters.

The field equation for a massless spin-three field wµ1µ2µ3 in AdSd+1 space is

K0(w)− 4 (d+ 1)

`2
wµ1µ2µ3 +

2 (d+ 1)

`2
g(µ1µ2 w

λ
µ3)λ = 0 , (6.1)

where K0(w) is the spin-three Lichnerowicz operator:

K0(w) = ∇ν ∇ν wµ1µ2µ3 −∇ν ∇(µ1 wµ2µ3)ν +∇(µ1 ∇µ2 wµ3)λ
λ (6.2)

+∇ν ∇λ g(µ1µ2 wµ3)νλ −∇ν ∇ν g(µ1µ2 w
λ
µ3)λ −

1

2
g(µ1µ2 ∇µ3)∇ν wλλν . (6.3)
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The (d + 2)-dimensional spin-three field, wM1M2M3 , decomposes to (d + 1)-dimensional

component fields of different spins:

wµνρ = wµνρ +
1

d+1
g(µν wρ)θθ, hµν = wµνθ +

1

d−1
gµν wθθθ , Aµ = wµθθ , φ = wθθθ .

(6.4)

We defined component fields as linear combinations of different polarizations, which is the

counterpart of spin-two situation eq. (5.3), to remove cross terms in field equations between

parity-odd spin-three and spin-one, respectively, parity-even spin-two and spin-zero. For

each component fields, the field equations read

K0(w)− 4 (d+ 1)wµ1µ2µ3 + 2 (d+ 1) g(µ1µ2w
λ
µ3)λ +  Ld−2  L−4

(
wµ1µ2µ3 − g(µ1µ2 w

λ
µ3)λ

)
− 3∇(µ1 hµ2µ3) + 3  Ld−2

(
∇(µ1 h− 4∇λ hλ(µ1

)
gµ2µ3)

+
3 (d+ 2)

d+ 1
 Ld−2  Ld−3 g(µ1µ2 Aµ3) = 0 , (6.5)

K0(h)− 4 (d+ 1)hµ1µ2 + (3 d+ 4) gµ1µ2 h−
3

2
 L−4  Ld−2 gµ1µ2 h

− 1

2
 L−4

(
gµ1µ2 ∇λwλνν + 2∇λwλµ1µ2 −∇(µ1 wµ2)λ

λ
)

− d+ 2

d+ 1
 Ld−3 (∇µAν +∇ν Aµ − 2 gµν ∇ρAρ) +

d+ 2

d− 1
 Ld−3  Ld−4 φ = 0 , (6.6)

∇ρ Fρµ −
d+ 3

d+ 1
 L−3  Ld−3Aµ − 3 (d+ 1)Aµ +  L−3  L−4w

ρ
ρµ

− 2  L−3 (∇ρ hρµ −∇µ h)− d+ 1

d− 1
 Ld−4∇µ φ = 0 , (6.7)

�φ− 2 (d+ 2)

d− 1
 L−2  Ld−4 φ− 2 (d+ 2)φ

+ 3  L−2  L−3 h− 3  L−2∇λAλ = 0 . (6.8)

Repeating the spectral analysis as in the lower spin counterparts, from the structure

of the above field equations, we find that mode functions are related one another by the

following spin-three spectrum generating complex:

Θ
3|3
n

 Ld−2 ��  L−4 : −M2
n,3|3 = −M2

n

Θ
2|3
n

 Ld−3 ��  L−3 : −M2
n,2|3 = −

(
M2
n + d+ 1

)
Θ

1|3
n

 Ld−4 ��  L−2 : −M2
n,1|3 = −

(
M2
n + 2 d

)
Θ

0|3
n

(6.9)

We now show that the complex eq. (6.9) can also be derived from the Kaluza-Klein

compactification of spin-three gauge transformations. After the compactification, we orga-

nize the component gauge parameters as

ξµν ≡ ζ̄µν +
1

d+ 1
gµν ζ̄θθ , ξµ ≡

3

2
ζ̄µθ , ξ ≡ 3 ζ̄θθ . (6.10)
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such that the spin-two gauge parameter is traceless. The numerical factors are chosen for

later simplicity. The gauge transformations of component fields in eq. (6.4) then read

δ wµνρ = ∂(µ ξνρ) + 3 g(µν  Ld−2 ξρ) ,

δ hµν = ∂(µ ξν) +
1

3
 L−4 ξµν +

2 (d+ 2)

(d2 − 1)
gµν  Ld−3 ξ ,

δ Aµ = ∂µ ξ +  L−3 ξµ

δ φ = 3  L−2 ξ . (6.11)

Mode expanding and equating terms of the same mode functions, we readily extract rela-

tions among the mode functions as

Θ3|3 ∼  Ld−2 Θ2|3 , Θ2|3 ∼  L−4 Θ3|3 ∼  Ld−3 Θ1|3 , (6.12)

Θ1|3 ∼  L−3 Θ2|3 , Θ0|3 ∼  L−2 Θ1|3 . (6.13)

We then see that these relations give rise precisely to the spin-three spectrum generating

complex, eq. (6.9). Moreover, after the mode expansion, these gauge transformations

can be identified with spin-three Stueckelberg gauge symmetry [15]. The complex in turn

provides for all information needed for extracting mass spectrum after the compactification.

For instance, the eigenvalue of Sturm-Liouville operator  Ld−2  L−4 of index (d − 6) can be

identified with minus the mass-squared of spin-three field in AdSd+1 space.

In identifying possible boundary conditions, another new feature shows up for the spin

starting from three: higher-derivative boundary conditions (HDBC) are unavoidable for

any choice of boundary conditions. Recall that, for the spin-two situation discussed in

section 5.2, there was one choice of boundary condition, B.C.2, which involved just the

one derivative and hence standard Robin boundary condition. Once the Dirichlet boundary

condition is imposed to any of the component fields, the structure of spin-three spectrum

generating complex eq. (6.9) automatically imposes boundary conditions involving two or

three derivatives to some other component fields, just like boundary conditions B.C.1 and

B.C.3 for spin-two field involved two derivatives to some other component fields. For exam-

ple, if we impose Dirichlet boundary condition for the field associated with Θk|3|θ=±α = 0

for k = 3, 2, 1, 0, we automatically get boundary conditions for other component fields from

eq. (6.9):

{ Θ3|3| = 0 ,  Ld−2Θ2|3| = 0 ,  Ld−2  Ld−3Θ1|3| = 0,  Ld−2  Ld−3  Ld−4Θ0|3| = 0}
{  L−4Θ3|3| = 0 , Θ2|3| = 0 ,  Ld−3Θ1|3| = 0 ,  Ld−3  Ld−4Θ1|3| = 0 }
{  L−3  L−4Θ3|3| = 0 ,  L−3Θ2|3| = 0 , Θ1|3| = 0 ,  Ld−4Θ0|3| = 0 }
{ L−2  L−3  L−4Θ3|3| = 0,  L−3  L−4Θ2|3| = 0,  L−2Θ1|3| = 0 , Θ0|3| = 0 }

Here, Θ| implies the boundary value: Θ|θ=±α. In all cases above, one of the four component

fields is subject to higher-derivative boundary condition (HD BC). We claim that this is a

general pattern but relegate reasons and intuitive understandings exclusively to section 7.

The pattern of mass spectra is similar to the spin-two situation. All Kaluza-Klein

modes form spin-three Stueckelberg system. The ground modes for each of the four possible
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type D(∆, s)s0(d,2) Field types mass-squared

type I D(d+ 2, 2) Stueckelberg spin-two system m2 = 2 (d+ 2) /`2

type II D(d+ 2, 1) Stueckelberg spin-one system m2 = 3 (d+ 1) /`2

type III D(d+ 2, 0) massive spin-zero m2 = 2 (d+ 2) /`2

type IV D(d+ 1, 3) massless spin-three m2 = 0

type V D(d, 3) Stueckelberg PM spin-three of depth-one system m2 = − (d+ 1) /`2

type VI D(d− 1, 3) Stueckelberg PM spin-three of depth-two system m2 = −2 d/`2

Table 2. The type of irreducible representation fields upon inverse Higgs mechanism of spin-three

Stueckelberg systems.

Figure 5. Mass spectra for spin-three higher-spin field. The horizontal line labels the mode n and

the vertical line labels the spin s. Each point represents a single mode function. Points in the same

rectangle form the Stueckelberg system.

boundary conditions comprise of the irreducible representations of reducible spin-three

Verma so(d, 2)-module. As s = 3, there are three Verma modules:

V (d+ 1, 3) = D (d+ 1, 3)⊕D (d+ 2, 2)

V (d, 3) = D (d, 3)⊕D (d+ 2, 1)

V (d− 1, 3) = D (d− 1, 3)⊕D (d+ 2, 0) (6.14)

From the relation between mass-squared and conformal dimension, we identify possible

type of fields that are present as ground modes in table 2.

The first three types are Goldstone modes, while the latter three types are massless

or partially massless spin-three gauge fields. As the spin is three, there are two possible

classes of partially massless fields. If the Stueckelberg system extends to spin-two, it is the

depth-one gauge field. If the Stueckelberg system extends to spin-one, it is the depth-two

gauge field.

The patterns of mass spectra for each possible boundary conditions are depicted in

figure 5 and in table 3.

We see that the pattern already observed for the spin-two field repeats in spin-three

field. For the Kaluza-Klein modes, all boundary conditions yield a universal pattern,

yielding a tower of spin-three Stueckelberg system. For the ground modes, the component

field with Dirichlet boundary condition is absent from the spectrum while other component

fields fill up massive fields and massless or partially massless spin-three gauge fields.
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Boundary Condition Ground modes

Θ3|3|θ=±α = 0 type I, type II and type III

Θ2|3|θ=±α = 0 type II, type III and type IV

Θ1|3|θ=±α = 0 type III, type IV and type V

Θ0|3|θ=±α = 0 type IV, type V and type VI

Table 3. The contents of ground modes for each of the four possible boundary conditions.

7 Higher-derivative boundary condition

In the previous section, we discovered an emerging pattern that the Janus waveguide bound-

ary conditions for higher-spin fields unavoidably involve boundary conditions containing

derivatives of higher-order (higher than first order, Robin-type). From the viewpoint of

Sturm-Liouville problem, such higher-derivative boundary condition (HD BC) is not only

non-standard but also potentially problematic. The Sturm-Liouville differential operator

is second-order in derivatives, so the operator in general fails to be self-adjoint in the

Hilbert space of square-integrable functions if HD BCs are imposed. In this case, the set

of Sturm-Liouville eigenfunctions are neither orthogonal nor complete. If so, how do we

make a sense of the Kaluza-Klein compactification with HD BC? Stated in the approach

of previous sections, how are the mode functions Θ
s|S
n defined and, lacking orthogonality

and completeness, how are higher-spin fields in AdSd+2 space decomposed into component

fields of various spins in AdSd+1 space?

There is one more issue regarding the HD BC. We observed that, for HD BC’s, some

of the component fields in AdSd+1 space become partially massless and have kinetic terms

of wrong sign. This ties well with the fact that partially massless higher-spin fields in

AdS space belong to non-unitary representations of the so(d, 2) module (though, in dS

space, they belong to unitary representations of so(d + 1, 1)). Is it possible to trace the

origin of this non-unitarity from the field equation and HD BC? In general, boundary

conditions are tradable with boundary interactions such that variation of the interactions

yield the boundary conditions. Is it then possible to treat the origin of non-unitarity of

partially massless fields from non-unitarity of the boundary action of modes localized at

the boundaries?

In this section, we answer these questions affirmatively positive by providing mathe-

matical foundation and elementary physical setup from which we can build intuitive under-

standings. The idea is this. In Sturm-Liouville problem with HD BC (and closely related

eigenvalue-dependent boundary conditions), we can always ensure the self-adjointness by

extending the inner product defining Hilbert space from L2(D) class of square-integrable

functions over domain D to L2(D)⊕RN class of square-integrable functions over D adjoined

with N -dimensional vectors of finite norm:

ψ(D) ∈ H[L2(D)] −→ Ψ(D) = ψ(D)⊗ q(∂D) ∈ H[L2(D)⊕ RN ]

〈ψ1, ψ2〉 :=

∫
D
ψ1ψ2 −→ 〈〈Ψ1,Ψ2〉〉 := 〈ψ1, ψ2 〉+ qT1 Gq2. (7.1)
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Here, G specifies the metric on the N -dimensional vector space. We shall refer to the

newly introduced inner product 〈〈 , 〉〉 as “extended inner product”. The point is that

failure of self-adjointness of the Sturm-Liouville operator all arise from contribution at ∂D

and so the self-adjointness can be restored by appropriate modification of the contribution

coming from ∂D. Thus, defining appropriately chosen extended inner product, one can

show [22, 23] that the Sturm-Liouville problem with HD BC can always be made self-

adjoint. Intuitively, the finite-dimensional vector space RN we introduced for the extension

corresponds to adding nontrivial degrees of freedom localized at the boundary ∂D.

Utilizing this idea, we shall show below how partially massless higher-spin fields can

be spectrally decomposed in a unique manner and also how to determine the boundary

action which render the spectral problem well-posed. We shall first illustrate this idea by

an elementary classical field theory consisting of a string with two-derivative boundary

condition. We will then apply the understanding to the spin-two fields in AdS space with

two-derivative boundary conditions B.C.1 and B.C.3, which are direct counterpart of the

above mechanical system.

7.1 Case 1: open string in harmonic potential

The first case we study is the classical field theory of an open string attached to non-

relativistic massive particles at each ends.13 From the viewpoint of the open string, its

motion is subject to boundary conditions. It is intuitively clear that the endpoint particles

exert boundary conditions that interpolate between Neumann and Dirichlet types. If the

masses are infinite, the string endpoints are pinned to a fixed position. If the masses are

zero, the string endpoints move freely. What is less obvious and also less known, however, is

that endpoint particles with a finite mass put the open string to higher-derivative boundary

conditions.14 Here, we will study this system in three difference ways and draw physical

interpretations in each case. We will then construct a refined inner product and a procedure

for constructing boundary action from HD BC and vice versa.

As the first approach, we start with boundary degrees of freedom, integrate them out,

and convert their dynamics to HD BC for the open string. Consider a relativistic open

string of tension T , stretched along x-direction 0 ≤ x ≤ ` and vibrating with vertical am-

plitude y(x, t). String’s end points are attached to harmonic oscillator particles at x = 0, `

whose masses, vertical positions and Hooke’s constants are M1, y1(t), k1 and M2, y2(t), k2,

respectively. See figure 6. The system is described by the action

I =

∫
dt
(
Lstring + Lparticle, 1 + Lparticle, 2

)
, (7.2)

where the Lagrangians of open string and massive particles are

Lstring =
T

2

∫ l

0
dx
(
(∂ty)2 − (∂xy)2

)
and Lparticle, a =

1

2

(
Ma ẏ

2
a − ka ya2

)
(a = 1, 2).

(7.3)

13This example was considered in detail at [24].
14What is lesser known is that this is completely equivalent to the statement that the particle dynamics

involves higher derivatives in time. This is carefully discussed for both flat and curved spacetime back-

grounds in [25].
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Figure 6. Open string connected to massive particles in harmonic potential.

The system is closed, so the action determines dynamics of the variables (y(x, t), y1(t), y2(t))

completely without specifying any boundary conditions. As the string is attached to the

particles, the string amplitude is related to particle positions by

y(x, t)
∣∣∣
x=0

= y1(t) and y(x, t)
∣∣∣
x=`

= y2(t). (7.4)

Thus, one should be able to describe the system in terms of the string amplitude y(x, t).

This is achieved by eliminating the particle variables y1(t), y2(t) and express them in terms

of y(x, t). In doing so, the constraints eq. (7.4) and particle actions turn into some bound-

ary conditions to the string amplitude y(x, t) at x = 0, `. Our goal is to derive these

boundary conditions, starting from boundary actions
∫

dtLparticle, 1,2 that are provided by

the endpoint particle actions. This procedure is nothing but the classical counterpart of

Born-Oppenheimer approximation.

To extract the boundary condition, we derive the field equation of the string from the

action eq. (7.2):

δI =

∫
dt

−T ∫ dx δy
[
∂2
t y − ∂2

xy
]

+ T [δy ∂xy]l0 −
∑
a=1,2

δya(Maÿa + kaya)

 (7.5)

Imposing the constraints eq. (7.4), δy(0, t) = δy1(t) and δy(l, t) = δy2(t), we obtain the

string field equation of motion(
∂2
t − ∂2

x

)
y(x, t) = 0 (0 ≤ x ≤ `) (7.6)

and equations of motion for each particles

M1 ÿ1 + k1 y1 − T ∂xy
∣∣∣
x=0

= 0 and M2 ÿ2 + k2 y2 + T ∂xy
∣∣∣
x=`

= 0 . (7.7)

Integrating out the endpoint particles amount to relating y1(t), y2(t) to the endpoints of

string amplitude by combining eq. (7.4) with eq. (7.6). We obtain the sought-for boundary

conditions

M1 ∂
2
xy − T ∂xy + k1 y

∣∣∣
x=0

= 0 and M2 ∂
2
xy + T ∂xy + k2 y

∣∣∣
x=`

= 0 . (7.8)
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We see that, for finite M1 and M2, the boundary conditions are second order in normal

derivatives, so they are indeed HD BCs. Were if M1,M2 zero, the boundary conditions are

the most general Robin boundary conditions. The Robin boundary condition is further

reduced to Neumann and Dirichlet boundary conditions in the limit k1,2 are zero and

infinite, respectively. Were if M1,M2 infinite, regularity of boundary conditions require

that ∂2
xy vanishes at the boundaries. In turn, ∂xy is constant-valued at the boundaries,

and so the boundary conditions are again reduced to Dirichlet boundary conditions.

Conversely, we can always reinterpret HD BCs on open string as attaching massive

particles at the endpoints. Start with an open string whose field equation eq. (7.6) is

subject to HD BCs eq. (7.8). This is the same situation as we have for the higher-spin

field in the AdS waveguide. Solving the open string field equation subject to the boundary

conditions is the same as extremizing a modified action Ĩ whose variation is given by

δĨ =

∫
dt

(
−T

∫ `

0
dx δy

[
∂2
t y − ∂2

xy
])

−
∫
x=0

dtλ1(t) δy
[
M1∂

2
xy − T∂xy + k1y

]
−
∫
x=`

dtλ2(t) δy
[
M2∂

2
xy + T∂xy + k2y

]
−M1

∫
x=0

dt δy
[
∂2
t y − ∂2

xy
]
−M2

∫
x=`

dt δy
[
∂2
t y − ∂2

xy
]
. (7.9)

Here, λ1,2(t) are Lagrange multipliers that imposes the HD BCs. The last line is redundant,

since they vanish automatically when the open string field equation from the first line is

obeyed. By reparametrization of time t at both boundaries, it is always possible to put

them to constant values, which we set to unity. To reconstruct the action Ĩ, we combine

derivative terms that depend on string tension T :

T

∫
dt

∫ l

0
dx δy ∂2

xy − T
∫

dt
(
δy ∂xy

)`
0

= −δ
(
T

2

∫
dt

∫ `

0
dx (∂xy)2

)
, (7.10)

and also combine derivative terms that depend on the mass parameters M1,M2:

−M1

∫
x=0

dtδy∂2
xy −M1

∫
x=0

dtδy
[
∂2
t y − ∂2

xy
]

= −M1

∫
x=0

dtδy∂2
t y = δ

(
M1

2

∫
dtẏ2

)
−M2

∫
x=`

dtδy∂2
xy −M2

∫
x=`

dtδy
[
∂2
t y − ∂2

xy
]

= −M2

∫
x=`

dtδy∂2
t y = δ

(
M2

2

∫
dtẏ2

)
.

(7.11)

Combining with other terms in the variation, we get

Ĩ =
T

2

∫
dt

∫ `

0
dx
[
(∂ty)2 − (∂xy)2

]
+

1

2

∫
dt (M1 ẏ

2
1 − k1y

2
1) +

1

2

∫
dt (M2 ẏ

2
2 − k2y

2
2) .

(7.12)

By renaming the endpoint positions as in eq. (7.4), we find that the action Ĩ is precisely

the action for an open string coupled to dynamical harmonic oscillator particles at each

ends, eq. (7.3).

We still need to understand how the Sturm-Liouville operator −∂2
x of open string can

be made self-adjoint for HD BC. It is useful to recall implication of self-adjointness for the
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Robin boundary condition. In this case, we can rewrite the open string action in terms of

inner product for square-integrable functions

Istring =
T

2

∫
dt
(
〈∂ty, ∂ty〉 − 〈y, (−∂2

x)y〉
)

where 〈f, g〉 ≡
∫ `

0
dx f(x) g(x) . (7.13)

Denote the square-integrable normal mode functions of (−∂2
x) as Xn (n = 0, 1, 2, 3, · · · ),

viz. (−∂2
x)Xn = λnXn. As the Sturm-Liouville operator (−∂2

x) is self-adjoint for the Robin

boundary condition, the normal mode functions can be made orthonormal and form a com-

plete set of basis of the Hilbert space of square-integrable functions. So, we can decompose

the string amplitude y(x, t) as

y(x, t) =
∑
n

Tn(t)Xn(x) (7.14)

and the open string action Istring as

Istring =
∑
n

T

2

∫
dt
(
Ṫ 2
n − λnT 2

n

)
. (7.15)

Motivated by this line of reasonings, we ask if the combined action of open string with

HD BCs can be written in terms of some inner product 〈〈 , 〉〉:

I〈〈,〉〉 =
T

2

∫
dt
(
〈〈∂ty, ∂ty〉〉 − 〈〈y, (−∂2

x)y〉〉
)
. (7.16)

We now prove that the inner product 〈〈 , 〉〉 that renders the Sturm-Liouville operator (−∂2
x)

self-adjoint under the HD BC eq. (7.8) is precisely the extended inner product eq. (7.1).

In the present case, the additional vector space is provided by the positions of two massive

particles attached at the string endpoints. Therefore, it spans R ⊕ R. The metric of this

two-dimensional vector space is given by masses (measured in unit of the string tension).

For a function space L2 ⊕R2, a general element and its inner product with respect to HD

BC eq. (7.8) would take the form

f =

 f(x)

f1

f2

 ∈ L2 ⊕ R2, f · g =

∫ `

0
dx f(x) g(x) +G11f1g1 +G22f2g2. (7.17)

Roughly speaking, two new real numbers f1,2 correspond to boundary values of f(x) which

are left undetermined by the Sturm-Liouville differential equation and the HD BC. The

boundary conditions on element of L2⊕R2 are HD BC in eq. (7.8) for f(x), together with

f1 = f(0) and f2 = f(l). With these boundary conditions, we now define the “extended

inner product” 〈〈 , 〉〉 for the open string with HD BC as

〈〈f, g〉〉 ≡
∫ `

0
dx f(x) g(x) +

M1

T
f(0)g(0) +

M2

T
f(l)g(l), (7.18)
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where the metric of R2 is chosen by the parameters in the HD BCs, eq. (7.8). With respect

to this extended inner product, we now find that the Sturm-Liouville operator (−∂2
x) of

open string is indeed self-adjoint:

〈〈f, (−∂2
x)g〉〉 − 〈〈(−∂2

x)f, g〉〉

= − 1

T
f(M1∂

2
xg − T∂xg + k1g)

∣∣∣
x=0

+
1

T
(M1∂

2
xf − T∂xf + k1f)g

∣∣∣
x=0

+
1

T
f(M2∂

2
xg + T∂xg + k2g)

∣∣∣
x=`
− 1

T
(M2∂

2
xf + T∂xf + k2f)g

∣∣∣
x=`

= 0 , (7.19)

where we arranged the harmonic force term (zero derivative terms in the boundary con-

dition) and the HD BC eq. (7.8) for f and g. With the extended inner product, we shall

expand the proposed action eq. (7.16) in terms of the original inner product over L2-space

and additional inner product over R2 space. We observe that, after renaming the boundary

values of y(x, t) as eq. (7.4), the proposed action I〈〈,〉〉 in eq. (7.16) is precisely the action

of open string attached to endpoint particles, I = Istring + Iboundary. We reiterate the key

point here is that extended inner product, HD BCs, and boundary actions are bear the

same information and dictate their structures one another.

The “extended inner product” we introduced poses a new issue originating from the

HD BC, equivalently, the endpoint particle dynamics. For some choices of the HD BCs,

the extended Hilbert space can be indefinite, viz. the norm 〈〈y, y〉〉 can become negative.

This happen precisely when the metric components M1,2/T have negative signs. Take, for

instance, M1 = M2 = M and k1 = k2 = 0. There always exists at least one mode

X0(x) = N0 sinh

[
m0

(
x− `

2

)]
with

1

m0
= −M

T
tanh

m0 `

2
, (7.20)

whose extended norm is negative for negative value of M

〈〈X0, X0〉〉 = N0
2

[
− `

2
+
M

T
sinh2 m0 `

2

]
< 0 . (7.21)

This mode is problematic as, upon mode expansion, the corresponding component in the

action eq. (7.15) has the kinetic term with wrong sign,

(−)
T

2

∫
dt
(
Ṫ 2

0 − λ0T
2
0

)
. (7.22)

This causes negative energy of the open string at classical level and negative probability

(and hence lack of unitarity) at quantum level. Moreover, the mode eigenvalue λ0 = −m2
0

is negative definite (which is again a consequence of negative value of M , as seen from

eq. (7.20)) and so the variable T0(t) develops an instability to grow exponentially large.

There is another example demonstrating the utility of boundary degrees of freedom

viewpoint. Consider k1 = k2 = k < 0, M1 = M2 = M > 0 and T > 0 case. In this case,

the extended inner product eq. (7.18) ensures positivity of the norm. However, there are
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some modes with negative eigenvalue. Generic even (with respect to x = `
2) mode function

with negative eigenvalue is Xe(x) = cosh
[
λ
(
x− `

2

)]
, (−∂2

x)Xe = −λ2Xe. HD BC implies

Mλ2 + T λ tanh

(
`

2
λ

)
= −k (7.23)

and this equation always has solutions because for λ ≥ 0, the left-hand side is starting

from 0 and monotonically increasing. Also the HD BC of generic odd function Xo(x) =

sinh
[
λ
(
x− `

2

)]
implies

M λ2 tanh

(
`

2
λ

)
+ T λ = −k tanh

(
`

2
λ

)
(7.24)

and this equation has a solution for T < − `
2 k.15 Again, these negative eigenvalue modes

are indications of instability of the system. In terms of HD BC, it is hard to see the origin

of this instability. However, in terms of boundary degrees of freedom, it is immediate that

the origin of instability is the negative spring constant.

So, by relating HD BCs to boundary action of extra degrees of freedom, we gain better

understanding of underlying physics. For M negative, it is hard to recognize the above

instability or non-unitarily at the level of equation of motion and boundary conditions. In

contrast, the boundary action clearly displays the origin of instability or non-unitarity and

it is simply a consequence of negative mass of the endpoint particles.

7.2 Spin-two waveguide with higher-derivative boundary conditions

We now apply our understanding of the HD BC in the previous subsection to the spin-

two field in AdS waveguide studied in section 5.2. Recall that spin-two field is the first

situation that HD BCs start to appear and, among three possible Dirichlet boundary

conditions, B.C. 1 and B.C. 3 contain two-derivative boundary conditions to some of

the component fields. In this subsection, we construct the extended inner product for

these boundary conditions and, from that, intuitively explain the origin of non-unitarity

for partially massless representations in AdSd+1.

We first construct the extended inner product for spin-two fields in AdS space. The

Sturm-Liouville problems with HD BCs that we will consider have the following form:

 Lb  La Θn = −λn Θn where  Lc  La Θn

∣∣
θ=±α = 0 (7.25)

for some weights a, b, c. Note that the Sturm-Liouville equation and the boundary condition

share the same operator  La. From free action of the spin-two field, we get an L2 inner

product

〈Θm ,Θn〉 =

∫ α

−α
dθ (secθ)d−4 Θm(θ) Θn(θ) , (7.26)

where the weight factor in the integration measure originates from the conformal factor of

the Janus metric eq. (3.2). As we deal with spin-two, s = 2 and so a+ b = d− 2s = d− 4.

15In terms of boundary degrees of freedom, this inequality means that repulsive force from spring is bigger

than string tension.
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We thus take the weight factor as (secθ)a+b. For any conformal factor (secθ)c with arbitrary

weight c, we integrate by part∫ α

−α
dθ(secθ)cΘm( LaΘn) = −

∫ α

−α
dθ(secθ)c( Lc−aΘm)Θn + (secα)c

[
ΘmΘn

]+α
−α . (7.27)

Using this, one finds that the differential operator  Lb  La is not self-adjoint on L2 functional

space,

〈Θm, ( Lb  LaΘn)〉−〈( Lb  LaΘm),Θn〉 = (secα)a+b
[
Θm( LaΘn)−( LaΘm)Θn

]+α
−α 6= 0 . (7.28)

By inspection, however, we find an extended inner product which renders the Sturm-

Liouville operator  Lb  La self-adjoint. It is

〈〈Θm,Θn〉〉 ≡ 〈Θm,Θn〉+
∑
σ=±

σNσΘm(σα)Θn(σα) , (7.29)

where

N+ = −N− = (c− b)−1 cotα(sec α)a+b. (7.30)

We can confirm that  Lb  La is indeed self-adjoint with respect to the extended inner product:

〈〈Θm, ( Lb  LaΘn)〉〉 − 〈〈( Lb  LaΘm),Θn〉〉

= (secα)a+b
∑
σ=±

σ
(

Θm( LaΘn)− ( LaΘm)Θn

)
(σα)

+
∑
σ=±

σNσ
(

Θm  Lb  LaΘn − ( Lb  LaΘm) Θn

)
(σα)

= (secα)a+b
∑
σ=±

σNσ
(

Θm( Lc  LaΘn)(σα)−( Lc  LaΘm)Θn(σα)
)
. (7.31)

The last expression vanishes by the HD BCs in eq. (7.25).

We apply the extended inner product to the ground modes for the HD BCs, B.C. 1

and B.C. 3 in section 5.2. In the last subsection, whether a given HD BC lead to non-

unitarity or not depends on parameters specifying the boundary conditions. The extended

norm-squared is positive definite if unitary, while it is negative definite if non-unitary.

For B.C. 1, the HD BCs are imposed on spin-zero mode with a = d − 3, b = −1 and

c = d− 2. We see that the normalization constants N± in eq. (7.29) are positive-definite,

so the norm-squared is positive-definite. In contrast, for B.C. 3, HD BCs are imposed on

spin-two mode with a = −2, b = d − 2, c = −1 and the normalization constants N± are

negative-definite. More explicitly, the ground modes of B.C. 3 are{
Θ

2|2
1 = N1 sec θ tan θ , Θ

1|2
1 = N2 sec θ type IV in table 1 ,

Θ
2|2
0 = N3 sec2 θ type II in table 1 ,

(7.32)

which correspond to the PM spin-two and massless spin-two fields, respectively. Boundary

condition of spin-one mode function is one-derivative boundary condition and its norm is
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positive-definite. In contrast, the norms of spin-two modes are

〈〈Θ2|2
1 ,Θ

2|2
1 〉〉 = N1

2

(∫ α

−α
dθ secd−2 θ tan2 θ − 2

d− 1
secd−2 α tanα

)
, (7.33)

〈〈Θ2|2
0 ,Θ

2|2
0 〉〉 = N3

2

(∫ α

−α
dθ secd θ − 2 secd α

(d− 1) tanα

)
. (7.34)

It can be shown that the norm eq. (7.33) which corresponds to the PM mode, is always

negative16 by the following estimate:

〈〈Θ2|2
1 ,Θ

2|2
1 〉〉 = N1

2

(
2

∫ α

0
dθ secd θ sin2 θ − 2

d− 1
secd−1 α sinα

)
< N1

2

(
2 sinα

∫ α

0
dθ secd θ sin θ − 2

d− 1
secd−1 α sinα

)
(7.35)

= −N1
2 2

d− 1

Here, the inequality holds because sin θ < sinα for 0 ≤ θ < α < π
2 . This negative norm

implies that the kinetic term of PM mode has the wrong sign.

With the extended inner product, we can construct the boundary action which reveals

physical properties of the imposed HD BCs. The action of free massless spin-two field h̄MN

on AdSd+2 background is

Ispin−two =

∫ √
ḡ dd+2xL2

(
h̄MN ; ḡMN , d+ 2

)
=

∫ √
ḡ dd+2x

[
− 1

2
∇̄L h̄MN ∇̄L h̄MN + ∇̄M h̄NL ∇̄N h̄ML − ∇̄M h̄MN ∇̄N h̄

+
1

2
∇̄L h̄ ∇̄L h̄− (d+ 1)

(
h̄MN h̄MN −

1

2
h̄2

)]
(7.36)

After the compactification on the AdS waveguide, each term of eq. (7.36) is decomposed

into quadratic terms of component fields, hµν , Aµ and φ, which can be expressed as L2

inner product eq. (7.26) with a+ b = d− 2s = d− 4. For example,∫
dd+1x

√
−g

∫ α

−α
dθ (secθ)d−4∇ρ hµν ∇ρ hµν =

∫
dd+1x

√
−g 〈∇ρ hµν ,∇ρ hµν 〉 .

As in the open string case, we require that each term of the quadratic action to be expressed

by appropriate inner product which ensures orthogonality and completeness of the mode

functions. We now know that, depending on the nature of boundary conditions, some

of these terms need to be the extended inner product which contain the contribution of

boundary action. The situation is more involved as there are three component fields each

of which obeys different boundary condition. From the spectrum generating complex, we

have three kinds of boundary conditions:

16The other norm eq. (7.34) is negative for α ∼ 0 and positive for α ∼ π/2. When one of the Kaluza-Klein

mass hits zero mass, this norm vanishes. In this specific value of α, there is no massless spin-two field, type

III, in the spectrum and type II appears instead.
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• spin-two Dirichlet, expanded by Θ
2|2
n : hµν ,  Ld−2Aµ,  Ld−2  Ld−3φ

• spin-one Dirichlet, expanded by Θ
1|2
n :  L−2hµν , Aµ,  Ld−3φ

• spin-zero Dirichlet, expanded by Θ
0|2
n :  L−1  L−2hµν ,  L−1Aµ, φ .

By a straightforward computation, we find that the action is decomposed as

I =

∫
dθ (secθ)d−4 L2 (hµν ; gµν , d+ 1)

+

[
− 1

2
〈Fµν , Fµν〉 − 2d 〈Aµ, Aµ〉+ 〈 L−2h

µν ,∇µAν +∇νAµ − 2gµν∇ρAρ〉

− 1

2
〈 L−2h

µν ,  L−2hµν〉+
1

2
〈 L−2h,  L−2h〉+

d(d+1)

(d−1)2
〈 Ld−4φ,  Ld−4φ〉−

d

d−1
〈 L−2h,  Ld−4φ〉

]
+

[
− d

d− 1

(
1

2
〈∇µ φ,∇µ φ〉+

d+ 1

2
〈φ, φ〉

)
+

2d

d− 1
〈 L−1A

µ,∇µφ〉
]
. (7.37)

The first line, the second bracket and the third bracket are spin-s component of modes:

〈Θs|2,Θs|2〉 for s = 2, 1, 0, respectively.17

Consider first B.C. 1. In this case, the spin-zero component field obeys the HD BC:

 L−1  Ld−3Θ0|2 = −λΘ0|2 and  Ld−2  Ld−3Θ0|2∣∣
θ=±α = 0. (7.38)

So, we need to adopt the extended inner product for terms involving the mode function

Θ0|2. They are the terms in the third bracket of eq. (7.37). Using the extended inner

product eq. (7.29) with a = d − 3, b = −1 and c = d − 2, we obtain the corresponding

boundary action from the difference between extended inner product and original inner

product:∫
dd+1x

√
−g d

(d−1)2

(secα)d−4

tanα

∑
σ=±

[
−
(

1

2
∇µφ∇µφ+

d+ 1

2
φ2

)
+

(
 L−1A

µ∇µφ
)]

θ=σα

.

(7.39)

Redefining the boundary values of spin-zero field as

φσ =

(
d

(d− 1)2

(secα)d−4

tanα

)1/2

φ
∣∣∣
θ=σα

, (σ = ±), (7.40)

we get the boundary action as

Iboundary,BC1 =
∑
σ=±

∫
dd+1x

√
−g
[
−
(

1

2
∇µφσ∇µφσ+

d+1

2
(φσ)2

)
+C

(
 L−1A

µ
∣∣
θ=σα

∇µφσ
)]
,

(7.41)

where C =
(

d
(d−1)2

cotα(secα)d−4
)1/2

. Note that the sign of kinetic term for boundary

spin-zero fields φ± is standard in our convention. This matches precisely with the result of

17The classification appears somewhat arbitrary. For instance, 〈 Ld−3φ,  Ld−3φ〉 belongs to 〈Θ1|2,Θ1|2〉,
but its another form 〈φ,  L−1  Ld−3φ〉 obtained by integration by parts belongs to 〈Θ0|2,Θ0|2〉. We will show

that the total action is nevertheless the same provided we keep track of boundary terms.
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section 5.2 that the waveguide compactification with B.C. 1 only yields unitary spectrum.

For the second term of boundary action, we may interpret it two alternative ways. We

can interpret that the bulk field Aµ is sourced by the boundary field φ±, equivalently, the

boundary value of bulk field Aµ turns on the boundary field φ±. Alternatively, we can

eliminate this term by writing the cross term 〈 L−1A
µ,∇µφ〉 as 〈Aµ,  Ld−3∇µφ〉. This is

related to the freedom which is explained in the footnote 17. We will revisit this issue at

the end of this section.

Consider finally B.C. 3. In this case, the spin-two component field is subject to the

HD BC:

 Ld−2  L−2Θ0|2 = −λΘ2|2 and  L−1  L−2Θ2|2∣∣
θ=±α = 0. (7.42)

We thus need to adopt the extended inner product for terms involving the mode function

Θ2|2. It is the first term in eq. (7.37) that contains the kinetic and mass-like terms of

spin-two field hµν . Using the extended inner product eq. (7.29) with a = −2, b = d − 2,

c = −1, we get the boundary action as

Iboundary,BC3 = −
∑
σ=±

∫
dd+1x

√
−g L2

(
hσµν ; gµν , d+ 1

)
(7.43)

where we renamed the boundary value of the bulk spin-two field by

hσµν =

(
1

d− 1

(secα)d−4

tanα

)1/2

hµν

∣∣∣|θ=σα, (σ = ±). (7.44)

Most significantly, with extra minus sign in front of the boundary action eq. (7.43), the

boundary spin-two field h±µν has kinetic terms of wrong sign. Again, this fits nicely with

the result of section 5.2 that the waveguide compactification with B.C. 3 yields non-

unitary spectrum for the partially massless spin-two fields. As stressed already, we hardly

anticipated that this is an obvious result just from the HD BCs. With the extended inner

product, we now have a firm understanding for the origin of the non-unitarity of partially

massless spin-two field without ever invoking so(d, 2) representation theory.

Summarizing,

• For the HD BC, we need to extend the functional space from L2 to L2 ⊕ RN to

ensure the Sturm-Liouville operator self-adjoint. We showed that this extension can

be physically understood as adding N many boundary degrees of freedom.

• From the extended inner product, we constructed the boundary action for a given

HD BC. The boundary action enabled to directly trace the origin of (non)unitarity

of waveguide spectrum.

• For B.C. 3 in section 5.2, the boundary action of boundary spin-two fields have

kinetic term of wrong sign. This explained why the partially massless spin-two field

is non-unitary in AdS space.

• For B.C. 1 in section 5.2, the boundary action of boundary spin-zero fields have

kinetic term of conventional sign. This explain why the massive spin-zero field is

unitary.
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Before concluding this subsection, let us revisit the ambiguity mentioned in the

footnote 17. Consider the B.C. 1 and the term 〈 Ld−3φ,  Ld−3φ〉. Such term was classi-

fied as originating from 〈Θ1|2,Θ1|2〉, so appears not to be refined. On the other hand,

using eq. (7.27), this term can also be rewritten as −〈φ,  L−1  Ld−3φ〉 with surface term[
(secα)d−4 φ  Ld−3φ

]∣∣+α
−α. This term belongs to 〈Θ0|2,Θ0|2〉, so needs to be refined. Though

this appears to pose an ambiguity, it actually is not. From

〈〈φ,  L−1  Ld−3φ 〉〉 = 〈φ,  L−1  Ld−3φ〉+
∑
σ=±
Nσ
(
φ  L−1  Ld−3φ

)
θ=σα

= −〈 Ld−3φ,  Ld−3φ〉+
∑
σ=±
Nσ
(
φ  Ld−2  Ld−3φ

)
θ=±α

, (7.45)

we see that 〈〈φ,  L−1  Ld−3φ〉〉 and −〈 Ld−3φ,  Ld−3φ〉 are the same, up to boundary conditions.

One can start with any bulk action, but the extended action is always the same. There is

no ambiguity.

8 Waveguide spectrum of spin-s field

From lower-spin field cases, we found that the linearized field equations of the waveguide

compactification are determined uniquely by the linearized gauge symmetries. In this

section, we shall take the same route and extend the results to arbitrary higher-spin fields.

For spins greater than three, however, yet another issue crops out. In the spin-three

case, we had to sort out the issue that the gauge parameter is traceless. Now, in the

Fronsdal formulation of higher-spin fields, not only gauge parameters are traceless but

also higher-spin fields are doubly traceless. As in the spin-three case, naive component

decomposition does not yield the Stueckelberg fields after compactification because of the

(doubly) traceless conditions for gauge fields or gauge parameters. In this section, we

will explicitly construct the correct linear combination of higher-spin fields and gauge

parameters. Fortuitously, analogous to the lower spin cases, we are able to explicitly

construct the Stueckelberg spin-s field and relations among mode functions. We shall

compare our results with previous work [15], as we can determine the equation of motions

and the mass spectrum for all possible boundary conditions, including partially massless

higher-spin fields.

8.1 Stueckelberg gauge transformations

In this subsection, we show that the gauge variation of AdSd+1 higher-spin field φ(k) for 0 ≤
k ≤ s in AdSd+1 space, which is a linear combination of AdSd+2 spin-s field φ̄M1,M2,··· ,Ms

after the AdS waveguide compactification, is given by

δφ
(k)
µ1···µk =

k

s
∇(µ1

ξ
(k)
µ2···µk) + a1  L−(s+k−1) ξ

(k+1)
µ1···µk + a2  Ld−(s−k)−2 g(µ1µ2

ξ
(k−1)
µ3···µk) , (8.1)

where the coefficients are

a1 =
s− k
s

and a2 =
k (k − 1) (d+ s+ k − 3)

s (d+ 2k − 5) (d+ 2k − 3)
.
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Extending the pattern of lower-spin fields in the previous sections, we expect that φ(k)’s

are the candidates of higher-spin Stueckelberg field in AdSd+1 space. These fields were first

considered in [15]. We now show that the gauge transformations eq. (8.1) exactly matches

with the higher-spin Stueckelberg gauge transformations, which were previously derived

directly in [15].

We first construct the correct linear combinations that render the corresponding higher-

spin field doubly traceless. The AdSd+2 spin-s field φ̄
(s)
M1···Ms

is totally symmetric and

doubly traceless, while its gauge transformation parameter ξ̄
(s)
M2···Ms

is totally symmetric

and traceless. Upon the AdS waveguide compactification, we define the AdSd+1 higher-spin

fields and gauge transformation parameters in terms of the combinations,

ψ
(s−m)
µ1···µs−m ≡ φ̄

(s)
µ1···µs−mθ···θ

ζ
(s−m)
µ1···µs−m−1 ≡ ξ̄

(s)
µ1···µs−m−1θ···θ, (8.2)

where m indices are taken along the waveguide θ-direction. A complication is that, while

ξ̄ (φ̄) obey the (double) traceless conditions, ζ (ψ) are not. To get the double traceless

AdSd+1 fields φ(k), we thus need to consider linear combination of ψ(`)’s. So, our ansatz

for double traceless higher-spin field is

φ
(k)
µ1···µk =

[k/2]∑
m=0

cm,k ψ
(m,k)
µ1···µk where ψ

(m,k)
µ1···µk = g(µ1µ2

· · · gµ2m−1µ2m ψ
(k−2m)
µ2m+1µ2m+2···µk) . (8.3)

The trace part of ψ-fields is not included in this linear combination as it would contain

the divergence term ∇µξµν··· in the gauge transformation. Requiring the double traceless

condition to φ(k) field leads to recursion relations to the coefficients cm,k. Taking the

normalization c0,k = 1, the solution is

cm,k =
1

4mm!

Γ(k + 1) Γ (k + (d+ 1)/2− 2−m)

Γ(k − 2m+ 1) Γ (k + (d+ 1)/2− 2)
for 4 ≤ k ≤ s. (8.4)

By a similar method, we get the traceless linear combination of gauge transformation

parameters:

ξ
(k)
µ1···µk−1

≡
[k/2]∑
m=0

k − 2m

k
cm,k ζ

(m,k−1)
µ1···µk−1

, (8.5)

where ζ(m,k−1) is defined similarly to eq. (8.3). With these higher-spin fields and higher-

spin gauge transformation parameters, the AdSd+2 gauge transformations are reduced to

the gauge transformations eq. (8.1).

8.2 Kaluza-Klein modes and ground modes

Having identified the correct gauge transformations eq. (8.1) of irreducible decompositions,

we now derive the relations between expansion modes Θ
k|s
n s and their differential relations.

Requiring each term in the gauge transformations eq. (8.1) expanded by the same mode

functions, we get the complexes(
0  Ld−(s−k)−2

 L−(s+k−2) 0

)(
Θ
k|s
n

Θ
k−1|s
n

)
=

(
c
k−1|k
n Θ

k|s
n

c
k|k−1
n Θ

k−1|s
n

)
, k = 1, · · · , s. (8.6)

– 45 –



J
H
E
P
1
1
(
2
0
1
6
)
0
2
4

These relations determine the Sturm-Liouville differential equations of Θ
`|s
n ’s for all

` = 0, · · · , s:

 Ld−(s−k)−2  L−(s+k−2) Θk|s
n = ck|k−1 ck−1|k Θk|s

n , (8.7)

 L−(s+k−1)  Ld−(s−k)−1 Θk|s
n = ck|k+1 ck+1|k Θk|s

n . (8.8)

Here, −M2
n,k|s is used to represent the n-th characteristic value of the Sturm-Liouville

problems eqs. (8.7), (8.8). One can show that eq. (8.7) and eq. (8.8) are equivalent, as the

identity

 Lm  Ln −  Ln−1  Lm+1 = (n−m− 1)

relates the Sturm-Liouville operators each other, and the eigenvalues each other by

M2
n,k|s = M2

n,k+1|s + d+ 2k − 3. (8.9)

All relations are summarized by the spin-s spectrum generating complex:

Θ
s|s
n

 Ld−2 ��  L−(2s−2) −M2
n,s|s = −M2

n

...
...

 Ld−(s−k−1)−2 ��  L−(s+(k+1)−2) −M2
n,k+1|s = −

(
M2
n+(s−k−1)(d+s+k−3)

)
Θ
k|s
n

 Ld−(s−k)−2 ��  L−(s+k−2) −M2
n,k|s = −

(
M2
n + (s− k) (d+ s+ k − 4)

)
...

...

 Ld−s−1 ��  L−(s−1) −M2
n,1|s = −

(
M2
n + (s− 1) (d+ s− 3)

)
Θ

0|s
n

(8.10)

Here, M2
n,s|s is the mass-squared of n-th mode of spin-s field. They in turn determine

mass-squared of lower spin fields, k = s − 1, s − 2, · · · , 1. This spectrum-generating com-

plex enables us to interpret the gauge transformations eq. (8.1) as the Stueckelberg gauge

transformations. Let us choose, for convenience, the relative normalizations in eq. (8.10) as

 L−(s+k−2) Θk|s
n = −ak|sMn,k|s Θk−1|s

n and  Ld−(s−k)−2 Θk−1|s
n =

Mn,k|s

ak|s
Θk|s
n (8.11)

where factors independent of mode index n are put together to

a2
k|s =

k (d+ s+ k − 3)

(s− k + 1) (2k + d− 3)
.

Then, the gauge transformation eq. (8.1) precisely gives rise to the Stueckelberg spin-s

gauge transformation in AdSd+1 space previously derived in [15]:

δφ
(k)
µ1···µk =

k

s
∇(µ1

ξ
(k)
µ2···µk) + αk ξ

(k+1)
µ1···µk + βk g(µ1µ2

ξ
(k−1)
µ3···µk) , (8.12)
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where

α2
k =

(k + 1) (s− k) (d+ s+ k − 2)

s2 (d+ 2k − 1)

(
M2 + (s− k − 1) (d+ s+ k − 3)

)
, (8.13)

βk = − (k − 1)

(d+ 2k − 5)
αk−1.

Here, the dependence on mode label n enters only through the mass-squared M2 := M2
n.

Apart from this, all modes of spin-k fields have the same structure of gauge transforma-

tions. Therefore, spin-k gauge transformation of n-th mode is simply the Stueckelberg

gauge transformation of spin-k field with mass Mn. In turn, these gauge transformations

completely fix the equations of motion for each spin k = 0, 1, · · · , s and for each mode n.

They constitute the Kaluza-Klein modes.

As in the lower-spin counterparts, were if M2
n is tuned to special negative values, it

can happen that αk = 0. These special values are the values at which Mn,k+1|s = 0 as well.

In this case, the Stueckelberg system of spin-s field decomposes into two subsystems: the

partially massless spin-s system of depth t = (s− k− 1) and the Stueckelberg spin-k field.

Importantly, the massless spin-s field is also part of the spectrum, since it is nothing but

partially massless spin-s field of depth-0.18 Together, they constitute the ground modes:

• The upper subsystem consists of
(
φ(s), φ(s−1), · · · φ(k+1)

)
and forms the Stueckelberg

system of partially massless field with depth t = (s− k − 1). Their mass spectra are

given by

M2 = −t (d+ 2s− t− 4) /`2. (8.14)

• The lower subsystem consists of
(
φ(k), φ(k−1), · · · φ(0)

)
and forms the Stueckelberg

spin-k field. Their mass spectra are given by

M2 = (s− k + 1)(d+ s+ k − 3)/`2. (8.15)

Group theoretically, the decomposition pattern of the ground modes can be understood

in terms of the Verma so(d, 2)-modules. At generic conformal weight ∆, the Verma module

V (∆, s) is irreducible. At special values of ∆ = d + k − 1, however, V(∆, s) decomposes

into so(d, 2) irreducible representations [26–28]:

V (d+ k − 1, s) = D (d+ k − 1, s)⊕D (d+ s− 1, k) . (8.16)

In eq. (8.16), the irreducible representation D(d+k−1, s) represents the partially massless

spin-s field, while D (d+ s− 1, k) represents the massive spin-(k + 1) field whose mass-

squared is set by the conformal weight ∆:

m2 `2 = ∆ (∆− d)− (s− 2) (d+ s− 2) . (8.17)

18Note that our conventions of the mass-squared of higher-spin field is such that it is zero when the

higher-spin fields have gauge symmetries. So, it differs form the mass-squared that appears in the AdS

Pauli-Fierz equation,
(
∇2 + κ2

s

)
φµ1 µ2 ·µs = 0.
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8.3 Waveguide boundary conditions

We next classify all possible AdS waveguide boundary conditions and determine the mass

spectra. As before, we shall only consider boundary conditions derived from the Dirichlet

conditions on Θk|s|θ=±α = 0 for some k. For 0 ≤ k ≤ s, there are (s+ 1) possible Dirichlet

conditions. The relations eq. (8.10) then fix the boundary conditions for all other fields

originating from the same mode functions:

 L−(s+k−1) · · · · · · · · ·  Ls+`−2 Θ`|s
∣∣∣
θ=±α

= 0 (` = k, k + 1, · · · , s)

 Ld−(s−k)−2 · · ·  Ld−(s−`−1)−2 Θ`k|s
∣∣∣
θ=±α

= 0 (` = k, k + 1, · · · , s) . (8.18)

Below, we show that the pattern of mass spectrum takes the form of figure 7. First,

to counter cluttering indices, we define simplifying notations as Θ` := Θk+`|s, M2
n,` :=

M2
n, k+`|s, U` :=  Ld−s−2+`+k and D` =  L−s+2−`−k. Then, the sub-complex of eq. (8.10) can

be written in the form

Θ`
n

U` �� D` : −M2
n,` = −

(
M2
n + (s− k − `) (d+ s+ k + `− 4)

)
Θ`−1
n

. (8.19)

By this complex, there is one-to-one map between Θ`
n and Θ`−1

n for M2
n,` 6= 0. If M2

n,` = 0,

there exists one additional mode Θ`
0 (Θ`−1

0 ) when ` is positive (negative). This additional

mode satisfies Dl Θ
l
0 = 0 for positive l, Ul Θ

l−1 for negative l. After inductively applying

this relation from ` = 0, one can show that the structure of mode function is given by

{Θk+`|s} = {K`
i , G

l
a=1, 2, ··· `} , and {Θk−`|s} = {K−`i , G−`a=1, 2, ··· `} . (8.20)

Here, K`
i ’s are the Kaluza-Klein modes, and G`a’s are the ground modes which satisfy the

equations{
DaDa+1 · · ·D`G

`
a = 0 with DkDk+1 · · ·D`G

`
a 6= 0 for all a < k

U−a+1 U−a · · ·U−`+1G
−`
a = 0 with Uk Uk+1 · · ·U−`+1G

−`
a 6= 0 for all a < −k + 1

.

(8.21)

The ground modes G`i with the same subscript i have the same eigenvalues. Their eigenval-

ues can be obtained by the first-order differential equation D`G
`
` = 0 and U−`+1G

−`
` = 0 for

positive `. Finally, fields corresponding to G`a, ` = s−k, · · · , a form the Stueckelberg system

of partially massless spin-s field with depth-(s−k−a+1). See our earlier expositions on this

in eq. (8.13) and thereafter. Fields corresponding to G`a, ` = −a, · · · ,−k form the massive

spin-(k−a) Stueckelberg field with mass-squared M2 = (s−k+a+1)(d+s+k−a−3)/`2.

These spectra are depicted in figure 7.

Summarizing,

• Mass spectrum for the boundary condition characterized by Dirichlet condition at

Θk|s consists of three parts. The first part is the set of massive spin-s Kaluza-Klein

tower, whose mass-squared is given by the eigenvalue of the Sturm-Liouville problem,
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Figure 7. Mass spectra for all possible boundary conditions characterized by Dirichlet conditions

on Θk|s. Each point represents a mode function. Points in the same rectangle form the Stueckelberg

system with the highest spin. The the upper triangle consists of the Stueckelberg system of partially

massless field, while the lower triangle consists of the Stueckelberg spin ` = 0, 1, · · · k − 1, as

described in eq. (8.22).

eq. (8.7) with k = s. The second part is the set of partially massless spin-s field

with depth-(0, 1, 2, · · · , s − k − 1). The third part consists of the set of massive

Stueckelberg spin ` = 0, 1, · · · , k − 1 with mass-squared, M2 = (s − ` + 1)(d + s +

`− 3)/`2.

• The so(d, 2) representations of ground modes are{
D (d+ s− t− 2, s) for t = 0, 1, · · · , s− k − 1

D (d+ s− 1, `) for ` = 0, 1, · · · , k − 1
(8.22)

whose masses are set in terms of conformal weights by eq. (8.17).

8.4 More on boundary conditions

So far, we studied a class of AdS waveguide boundary conditions for spin-s field that are

characterized by Dirichlet condition on a mode function. Quite satisfactorily, the resulting

(s+ 1) possible boundary conditions led to the mass spectra encompassing all of massive,

partially massless and massless higher-spin fields upon the compactification. Here, we dwell

further on variations of this idea.

– 49 –



J
H
E
P
1
1
(
2
0
1
6
)
0
2
4

Higher-derivative boundary conditions and boundary action. Two remarks are

in order regarding the boundary conditions and boundary action. We showed in section 7

that, for spin-two system, HD BC imply the presence of boundary degrees of freedom

with nontrivial dynamics described by their boundary action. Mainly due to algebraic

complexity, extension of the analysis to higher-spin is not performed yet with full generality.

However, the factorization property of Sturm-Liouville differential equations renders the

analysis simplified. Based on the intuition gained so far, we here mention the expected

patterns for arbitrary spin-s.

• For the boundary conditions derived from the Dirichlet conditions Θk|s|θ=±α = 0

for k ≤ s − 2, the spectrum contains partially massless higher-spin fields. Their

non-unitarity can be traced to the non-unitarity of boundary action. One can show

that the boundary action has some of the kinetic terms with wrong sign, leading to

indefinite norm in the extended Hilbert space. These boundary degrees of freedom

is precisely associated with the partially massless fields. In contrast, for the cases

with k ≥ s− 1, one can also show that all kinetic terms in the boundary action have

positive sign. Correspondingly, they are all unitary.

• Explicit analysis for spin-three and spin-four fields suggests that the masses of the

boundary degree of freedom is proportional to the masses in eq. (8.14) and eq. (8.15).

For instance, in spin-three system, we verified that the boundary action of type II

in table 2 is associated with the first spectrum in figure 5.

Extended Dirichlet conditions. More generally, we can also consider extended form

of the boundary conditions beyond those characterized by the Dirichlet conditions.19 We

can see from the pattern of raising and lowering operators between adjacent spins in the

spectrum generating complex eq. (8.10) that a new class of boundary conditions are possi-

ble. To this end, let us extend the mode functions Θk|s|θ=±α = 0 to the regime, k > s and

k < 0. Though there is no corresponding physical excitations, formal analytic extension is

possible;

Θ
s+1|s
n

 Ld−2 ��  L−2s+1 −M2
n,s+1|s = −

(
M2
n − 2 s− d+ 3

)
Θ
s|s
n

. (8.23)

By analysis identical to the ones in the previous cases, one can derive the spectrum of the

ground modes and relate them to so(d, 2)-modules. For k > s, the ground modes consist

of two parts: the ground modes of k = s and additional towers

M2 = (l − s) (d+ s+ l − 4) /`2 , D(d+ l − 2, s) for l = s+ 1, s+ 2 , · · · , k . (8.24)

For k < 0, the ground modes also consist of two parts: the ground modes of k = 0 and

additional towers,

M2 = (l − s) (d+ s+ l − 4) /`2 , D(d+ l − 2, s) for l = −|k|+ 1,−|k|+ 2, · · · ,−1, 0 .

(8.25)

We see that the k < 0 case gives rise to non-unitary representations of so(d, 2).

19In section 10, we will discuss other class of extended boundary conditions.
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8.5 Decompactification limit

In our setup, the AdS waveguide ranges over the Janus wedge [−α, α]. If the wedge α

approaches π/2, the waveguide decompactifies to the entire AdSd+2. In other words, the

α = ±π/2 hyperplanes correspond to the AdSd+2 boundary. As such, one might anticipate

that the spectra of AdSd+1 waveguide asymptotes to the spectra of AdSd+2. This seems

to be in tension with our result, as the mass spectra of spin-s field in AdSd+1 space arises

only for special set of boundary conditions. Here, we discuss subtleties involved in the

decompactification limit.

Consider the AdSd+2 massless spin-s spectrum from the viewpoint of AdSd+1 space.

This is just like the L → ∞ limit of flat space waveguide we studied in section 2. The

L2 square-integrable modes of massless spin-s field form the so(d + 1, 2)-module: D(d +

s−1, s)so(d+1,2). Representation theoretically, we can decompose this module into so(d, 2)-

modules, a procedure referred to as the “dimensional degression” in [8]:

D(d+s−1, s)so(d+1,2) =
∞⊕
n=0

D(d+n+s−1, s)so(d,2) ⊕
s−1⊕
l=0

D(d+s−1, l)so(d,2) . (8.26)

We can relate these modules with states that arise from the compactification of higher-spin

field in the AdS waveguide, as the foliation of figure 1 precisely matches with the above

dimensional degression. There are two kinds of so(d, 2)-modules in the right hand side

of eq. (8.26): the first set of modules have the same spin, spin-s but different conformal

dimensions, while the second set of modules have the same conformal dimension but dif-

ferent spins ranging over 0 to s − 1. We see that the second set of modules in eq. (8.26)

coincide with the set of ground modes for k = s (Θs|s|θ=±α = 0) in eq. (8.22). In order

to reconstruct the so(d + 1, 2) module in the left side of eq. (8.26), we would then need

the Kaluza-Klein modes from k = s to match with the the first set of modules. Below, we

demonstrate this affirmatively.

In the k = s case, the mass spectra of spin-s field are determined by the Sturm-Liouville

equation eq. (8.7) and the Dirichlet condition for mode functions Θs|s:

 Ld−2  L−2(s−1) Θs|s
n = −M2

n Θs|s
n , where Θs|s|θ=±α = 0 . (8.27)

The solution is given by

Θs|s
n = (cos θ)µ (c1 P

µ
ν (sin θ) + c2Q

µ
ν (sin θ)) , (8.28)

where Pµν and Qµν are the associated Legendre functions with arguments, µ = 1
2 (d+ 2 s− 3)

and ν (ν + 1) = M2
n− 1

4

(
1− (d+ 2s− 4)2

)
. In the decompactification limit, the boundary

conditions Θs|s|θ=±α = 0 take the form

0 = −π
2

sinA
(

(Pµν )2 − 4

π2
(Qµν )2

)
− 2 cosAPµν Q

µ
ν (8.29)

'

−
1

2π sinA (cos(µπ) Γ(µ))2 (2
ε

)µ
for even d

−π
2 sinA

(
1

Γ(1−µ)

)2 (
2
ε

)µ
for odd d

(8.30)
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where A = π (µ+ ν) and 1 � ε = 1 − sinα > 0. Therefore, it must be that µ + ν are

integer-valued in the decompactification limit. From the relation eq. (8.17), it immedi-

ately follows that the modules that correspond to the Kaluza-Klein modes are precisely⊕∞
n=0 D(d+ n+ s− 1, s).

Spectrum for the cases of (k = s) goes to the spectrum of “dimensional degression [8]”

in the decompactification limit (i.e. α→ π/2).

All are well so far, so one might anticipate that the spectral match with the dimensional

degression continues to hold for k 6= s. This however is no longer true. The point is that

some of the ground modes in eq. (8.22) contain the modules which are not in the massless

spin-s modules of AdSd+2 space, D(d+ s− 1, s)so(d+1,2) in eq. (8.26). The mode functions

that would potentially match with are actually singular (equivalently, the normalization

factor goes to zero) in the decompactification limit. In particular, massless spin-s field

in the AdSd+2 space belongs to one of these singular modes. For spin-two case, this was

already shown in eq. (5.36). Conversely, this explains transparently why the dimensional

degression [8] of AdSd+2 space does not generate “massless” spin-s fields in AdSd+1 space.

9 Holographic dual: isotropic Lifshitz interface

In this section, we discuss an interface conformal field theory whose holographic dual would

exhibit the AdS waveguide and higher-spin field theory on it. For concrete discussion, we

shall study this in the context of free O(N) vector model in 2 < d < 4. However, the

setup is completely general, and can easily be extended to other critical models and higher

dimensions. The CFT action is schematically structured as

ICFT =
1

g2
B

∫
B

dd+1x (∇φ)2 +

∞∑
z=1

1

g2
z,I

∫
I

ddx (∂zφ)2 , (9.1)

where ∇, ∂ are (d+ 1)-dimensional and d-dimensional derivatives, respectively. This CFT

system is a juxtaposition of (d + 1)-dimensional Heisenberg model in the bulk and d-

dimensional isotropic Lifshitz Heisenberg model in the interface. See figure 8.

In the action, gB refers to the coupling parameter in the bulk, while gI refers to the

coupling parameters in the interface. By normalization, one can always set one of the cou-

pling parameters, say, gB to unity, such that gI ’s relative to gB are physically meaningful.

However, for the sake of classification, we will keep the normalizations as above.

The behavior of the system is extremely rich, controlled by the relative strength of the

coupling parameters. We can classify them as follows.

• g2
B � gk,I : the (d + 1)-dimensional bulk is strongly interacting, so the dynamics is

described by (d+1)-dimensional O(N) Heisenberg magnet. This system exhibits con-

served (even) higher-spin currents starting from s = 2. The holographic dual would

be higher-spin gauge theory on AdSd+2 space. As the bulk is strongly interacting,

the energy-momentum of the interface is not separately conserved. Only the (d+ 1)-

dimensional energy-momentum tensor is conserved. The same goes for higher-spin

tensor currents. In terms of AdS waveguide, this is the decompactification limit.
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• g2
1,I � g2

z 6=1,I, g
2
B: the d-dimensional interface is strongly interacting with Lifshitz

exponent z = 1. The dynamics is described by d-dimensional O(N) Heisenberg

magnet. This system exhibits conserved (even) higher-spin current starting from

s = 2. The holographic dual would be higher-spin gauge theory on AdSd+1 space. In

terms of AdS waveguide, this corresponds to the Dirichlet condition to each higher-

spin field. The interface CFT is d-dimensional and cannot interpolate to (d + 1)

dimensions. In terms of holographic dual AdS waveguide, the decompactification

limit is singular.

• g2
k,I � g2

z 6=k,I, g
2
B: the d-dimensional interface is strongly interacting with the leading

Lifshitz exponent z = k > 1. The dynamics is described by a d-dimensional Lifshitz

O(N)z Heisenberg magnet. As the bulk has the Lifshitz exponent z = 1, this critical

behavior is achieved only if the interface is fine-tuned. This is possible only when the

interface maintains nontrivial interactions (even though weak) with the bulk. Thus,

the interface is an open system interacting with the reservoir bulk system) and hence

in general non-unitary.

The critical behavior classified as above fits perfectly with the AdS waveguide spectra

we analyzed in the previous sections. In the gravity dual, the AdS wedge angle α measures

the extent the extra dimension extends. Thus, we expect that it is related to the coupling

parameters of the above interface Lifshitz O(N) Heisenberg magnet as

tanα '
g2
z,I

g2
B

. (9.2)

The critical behavior as above is quite rich and intricate. Nevertheless, it can be easily

achieved within the Lifshitz-Janus system. The idea is that the coupling parameters gB, gz,I
can be arranged by a nontrivial kink profile of the dilaton field, which is O(N) singlet. The

interface is a hypersurface of (d + 1) dimensions in which the bulk Heisenberg magnet

live in. Denote the local coordinate normal to the interface as y and the dilaton field as

Φ(y). The anisotropic, Lifshitz O(N) Heisenberg magnet controlled by the dilaton field is

described by the action

ICFT =

∫
ddx

∫
dy (∇φ)2 +

∞∑
z≥2

∫
ddx

∫
dy (∂z−1

y Φ(y))(∂zφ)2 . (9.3)

If the dilaton field is fine-tuned to behave across the interface at y = 0 as Φ(y) ∼
g2
k,I y

k−1δ(y), the second term gives rise precisely to the type of interactions of the form

eq. (9.1). This argument then provides the existence proof for the CFT dual of the higher-

spin system compactified on the Janus waveguide.

10 Discussions and outlooks

In this paper, we developed a new approach for realizing (inverse) Higgs mechanism of

all known massive and partially massless higher-spin fields, at the linearized level. Our

approach is geometric and utilizes the Kaluza-Klein compactification. We pointed out that

the Janus wedge provides the AdS waveguide with which the Kaluza-Klein compactification

of higher-spin fields can be performed. We showed that, upon compactification of AdSd+2
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(∇Φ)2

∂kΦ
2

(∇Φ)2

gbulk

gbulk

ginterface

Figure 8. The interface configuration of Lifshitz O(N) Heisenberg magnet. The bulk of the CFT

is (d+ 1)-dimensional system. The boundary of the CFT is d-dimensional isotropic Lischitz system

of exponent z > 1.

down to AdSd+1, two classes of higher-spin fields appear. The first-class, which we referred

to as the Kaluza-Klein modes, comprises of infinite tower of massive higher-spin fields.

Their masses depend on the waveguide wedge size α, and become infinitely heavy as α

goes to zero. As in flat space, these Kaluza-Klein masses are generated by the AdSd+1

Stueckelberg couplings, whose origin is the higher-spin gauge symmetry in AdSd+2 space.

The second-class, which we referred to as ground modes, consists of higher-spin fields of

all possible types: massive, partially massless and massless. Their masses, however, are

independent of the wedge angle α and are just set by the AdSd+1 radius. Again, their

equations of motion are organized by the AdSd+1 Stueckelberg couplings coming from the

higher-spin gauge symmetry in AdSd+2 space. The mass spectrum of ground modes fits

to the breaking pattern of Verma so(d, 2)-modules. The ground modes can be massless,

partially massless and massive with specific masses as described in eq. (8.22).

In this paper, we mainly concentrated on the compactification of massless spin-s from

AdSd+2 to AdSd+1 for the set of Dirichlet boundary conditions Θk|s|θ=±α = 0. We can

extend the analysis along the following directions.

• We could consider more general boundary conditions, MΘk|s|θ=±α where M is an

arbitrary differential operator. This would lead to a set of new boundary conditions

M  L−(s+k−1) · · ·  Ls+l−2 Θl≥k|s|θ=±α = 0 ,

M  Ld−(s−k)−2 · · ·  Ld−(s−l−1)−2 Θl≥k|s|θ=±α = 0 (10.1)
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The spectrum is more complicated but, by construction, the new ground modes

necessarily include the ground modes we discussed in section 8 for the Dirichlet

boundary condition.

• We assumed that the waveguide wedge is parity-symmetric, −α < θ < α. We

can generalize it to a general domain α1 < θ < α2 and impose different boundary

conditions at each boundary.

• We can also compactify more than one directions. We worked out details of the

dimensional reduction method from AdSd+k to AdSd in appendix C. It is the AdS

generalization of the non-abelian Kaluza-Klein compactification [29]. This generaliza-

tion also provides a geometric framework for the colored higher spin theory proposed

in [30–36].

• We can also consider the fermionic higher-spin fields as well as super symmetric

higher-spin fields. The latter is particularly interesting from the viewpoint of bound-

ary conditions, as supersymmetry is generally reduced by the boundary conditions.

• Although far less interesting, we can also start from partially massless fields in AdSd+2

space. Partially massless fields and their Stueckelberg couplings retain partial gauge

symmetries. At the linearized level, these partial gauge symmetries are sufficient

enough to fix the action, so it should be possible to classify boundary conditions

that retain massless fields and understand physical mechanism of the new gauge

symmetries.

Further development of the Higgs mechanism we studied from the dual conformal field

theory viewpoint are within the reach and would be very interesting.

• We argue that isotropic Lifshitz interface of O(N) Heisenberg magnet in the spin-

tronics and the Gross-Neveu fermion system in graphene stacks at Dirac point are

ideal candidates for the concrete realization of dual conformal field theory. Both in-

terface and Lifshitz behaviors are realizable in Type IIB string theory from the Janus

configuration.

• Further interesting direction of research is the emergence of partially massless fields

in the infrared and subsequent renormalization group flow to (d − 1)-dimensional

conformal field theories. For partially massless fields, dual CFTs were conjectured

in [26, 27, 40, 41]. It would also be interesting to investigate the reduction of a

partially massless field on AdSd+2 on codimension-two defects.

• In the context of AdS/CFT correspondence, the free energy of both side of the corre-

spondence should match and, especially, one-loop free energy of AdS side correspond

to 1/N correction of free energy of CFT side. The Casimir free energy calculation [42]

will provide clues to the quantum aspects of dual CFTs.20

We are currently pursuing these issues and will report our results in future publications.

20For similar calculation on HS/CFT duality, see [43–45].
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A AdS space

Conventions are demonstrated in d dimension. Space-time coordinate indices µ, ν and

tangent indices a, b run from 0 to d. We will use most positive sign for metric and

ηab = diag(−1, 1, · · · , 1). We will call eµ
a and (sometimes its inverse ea

µ or ea = eµ
a dxµ)

as vielbein if it satisfies ea
µ ηab eb

ν = gµν . Covariant derivatives are defined as follow.

ωab = ωµ
ab dxµ is spin connection.

∇µAρ = ∂µA
ν + ΓνρµA

ρ, ∇µAν = ∂µAν − ΓρµνAρ (A.1)

∇µAa = ∂µA
a + ωµ

a
bA

b, ∇µAa = ∂µAa − ωµbaAb. (A.2)

(A)dSd+1 metric and Riemann tensor are given as following.

ds2 = gµνdx
µdxν = − `

2

z2
(dt2 − d~x2

d−1 − dz2), (A.3)

Rµνρσ =
σ

`2
(−gµρ gνσ + gµσ gνρ) =

2 Λ

d (d− 1)
(gµρ gνσ − gµσ gνρ) , (A.4)

where ` is (A)dS radius and σ is (+1) for AdS and (−1) for dS. Λ = − σ
2 `2

d (d− 1) is the

cosmological constant.

B Verma module and partially massless(PM) field

Here we recall the definition of the Verma so(d, 2)-module. Consider a finite dimensional

module Y(∆, Y ) of sub-algebra so(2) ⊕ so(d). We use ∆ to denote conformal dimension

and Y to denote Young diagram of so(d). For the analysis of symmetric higher spin, we

limit ourself to the Young diagram of a single row of length s. The Verma so(d, 2)-module

V(∆, s) is the space generated by action of the raising operators to the module Y(∆, Y ).

We will also denote D(∆, s) for the irreducible quotient of Verma module V(∆, s). For

generic value, Verma module V(∆, s) is irreducible and therefore coincides with D(∆, s).

However, for specific values, it becomes reducible with a non-trivial submodule. For in-

stance, ∆ = d+ k − 1 with an integer 0 ≤ k ≤ s−1, there is a submodule D (d+ s− 1, k).
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Field type ∆+ m2 Gauge variation: δ φµ1µ2···µs

depth-t PM field d+ s− t− 2 − σ
`2
t (d+ 2s− t− 4) ∇(µ1 · · · ∇µt+1 ξµt+2···µs) + · · ·

Table 4. Partially massless(PM) field.

Therefore, D (d+ k − 1, s) is not equal to Verma module but is to the quotient of Verma

module:

V (d+k−1, s) ' D (d+k−1, s)⊕D (d+s−1, k) , D (d+k−1, s) ' V (d+k−1, s)

D (d+s−1, k)
.

(B.1)

For k = s − 1, D(d + (s − 1) − 1, s) is unitary and its field theoretical realization is

the massless spin-s field propagating in AdSd+1. For 0 ≤ k < s − 1, D(d + k − 1, s) is

non-unitary and their field theoretical realizations are partially massless(PM) fields21 with

depth t = (s − k − 1). (For more general cases, see [26–28].) The action for PM field has

the PM gauge symmetry which contains covariant derivatives up to order t− 1. This can

be derived by Stueckelberg form of PM field.

δ φµ1µ2···µs = ∇(µ1 · · · ∇µt+1 ξµt+2···µs) + · · · (B.2)

See paragraph below eq. (5.23) for PM spin-two case. The properties of PM fields are given

in table 4.

In table 4, m is defined by the following convention. By the mass of a field, we refer to

the mass in flat limit. Therefore, it is zero when the higher spin gauge symmetry exist. In

this convention, the relation between mass-squared and conformal dimension is given by

m2 `2 = ∆ (∆− d)− (s− 2) (d+ s− 2) . (B.3)

Note that this is different from the mass-squared which appears in Fierz-Pauli equation in

AdS [46, 47]:
(
∇2 + κ2

)
φµ1 µ2 ·µs = 0 which is given as κ2 `2 = ∆ (∆− d)− s.

Finally, so(d+1, 2)-module for massless spin-s can be decomposed into so(d, 2)-modules

by the following branching rules [8]:

D(d+ s− 1, s)so(d+1,2) =
∞⊕
n=0

D(d+ n+ s− 1, s)so(d,2) ⊕
s−1⊕
l=0

D(d+ s− 1, l)so(d,2) (B.4)

In main text we open omit subscripts so(d,2) for brevity.

C From (A)dSd+k to (A)dSd+1

In section 3, we described the AdS waveguide by using Poincaré coordinate of AdSd+2.

However, it can be generalized to other coordinate system and one can show that the

results which are given in the main text do not change. In this appendix, we analyze the

more general AdS waveguide which can be built from (A)dSd+k.

21Extrapolating our convention, the massless higher-spin field is the partially-massless higher-spin field

with depth-zero.
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The main consistency condition for the waveguide is the covariance condition: covariant

derivatives of tensors in AdSd+k dimension are also tensors in AdSd+1. To see more explicit

form of covariant conditions, let us write down a AdSd+k covariant derivative in term of

AdSd+1 language,

∇̄µ B̄νa = ∇µBνa − Γ̄θiµν Bθi
a + Ω̄a

µmAν
m. (C.1)

Here, µ, ν are for (A)dSd+1 indices and θi internal space indices in lower dimensional

space-time point of view. A = (a,m) are defined in similar ways: a, b are indices for

(A)dSd+1 local space-time indices, m and n are for internal space. “Bar” are used to

represent quantities which are tensors or covariant derivatives in d+ k dimension. Finally,

Ω̄ is spin connection in d + k dimension and Γ̄ is Christoffel symbol. The covariance

condition of ∇̄µ B̄νa implies that Γ̄θiµν and Ω̄µ
am must be tensor in the lower dimension.

To achieve these covariance conditions, we shall take the ansatz for spin connection

Ω̄AB and vielbein ĒA:

Ēa = f0E
a, Ēm = Mm

n dθ
n , Ω̄ab = Ωab , Ω̄am = NmEa , Ω̄mn = Lmn . (C.2)

Here, f0, Nm and Mm
n are functions of θi and independent of xµ. The one-form tensor

Lmn is also independent of xµ. Ea and Ωab are the vielbein and spin-connection of AdSd+1:

dEa + Ωab ∧ Eb = 0, dΩab + Ωac ∧ Ωc
b + σ Ea ∧ Eb = 0 . (C.3)

where σ is +1 for AdS and −1 for dS. The first equation is the torsionless condition and

second is locally (A)dS conditions. The similar conditions for Ω̄AB and ĒA constrain

unknowns quantities in the ansatz eq. (C.2):

δf0 = NmĒm , δNm = NnΩ̄nm + σ′f0Ē
m , σf2

0−NmNm = σ , (C.4)

δĒm+Ω̄mn ∧ Ēn = 0 , δΩ̄mn+Ω̄n
l∧Ω̄ln+σ′Ēm ∧ Ēn = 0 , (C.5)

where δ represents the exterior derivatives of internal space θi. I.e. δf =
∑k

i=1
∂f
∂θi
dθi. The

σ′ is introduced to represent the curvature sign of (A)dSd+k. The equations in eq. (C.5)

imply that Ēm and Ω̄mn are vielbein and spin connection for the Euclidean space with

constant curvature which is equal to the curvature of AdSd+k. After imposing this ansatz

(or solving constraints eqs. (C.4), (C.5)), one can easily check the covariance conditions,

as in the explicit examples for k = 1 and k = 2.

(k = 1 case). In this case, Mm
n → M and Nm → N and eq. (C.5) is automatically

satisfied. The constraints eq. (C.4), Cristoffle symbols and (A)dSd+2 metric are,

σ′ f0
2 −N2 = σ ,

d f0

d θ
= N M ,

dN

d θ
= σ′f0M , (C.6)

Γ̄θνλ = −f0N

M
gνλ, Γ̄λνθ =

M N

f0
δλν , Γ̄θθθ =

1

M

dM

dθ
, (C.7)

d s2
d+2 = f2

0 d s
2
d+1 +M2 dθ2 . (C.8)

AdS waveguide from AdSd+1 can be constructed by solving constraints (C.6) with σ = 1

and σ′ = 1. It can be checked that f0 = M = sec θ and N = tan θ are solutions of
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Waveguide(σ′/σ) f0 M N Γ̄1 Γ̄2 Γ̄θθθ

AdSd+2 to AdSd+1 (1/1) sec θ sec θ tan θ − tan θ tan θ tan θ

dSd+2 to dSd+1 (-1/-1) sech θ −sech θ tanh θ tanh θ − tanh θ − tanh θ

AdSd+2 to dSd+1 (1/-1) tan θ sec θ sec θ − tan θ sec2 θ cot θ tan θ

Table 5. Various waveguide from (A)dSd+2 to (A)dSd+1 and related factors. Γ̄1 and Γ̄2 are the

parts of Γ̄θµν and Γ̄µνθ: Γ̄θµν = Γ̄1 gµν , Γ̄µνθ = Γ̄2 δ
µ
ν .

constraints eq. (C.6).22 In this case metric is given by ds2
AdSd+2

= 1
cos2 θ

(ds2
AdSd+1

+ `2dθ2)

where ds2
AdSd+1

is an arbitrary locally AdS metric as we advertised.

By solving conditions in Eq (C.6), we can construct various type of (A)dS waveguide.

One can obtain the dSd waveguide from dSd+1 and AdSd+1. However, we cannot obtain

the AdS waveguide from dSd+1 because of the first equation in eq. (C.6). For the other

cases, see table 5.

(k = 2 case). Ansatz for vielbein and spin connection in (d+ 3)-dimension are,

Ēa = f0E
a, Ēi = M i

jdθ
i, Ω̄ai = N iEa, (C.9)

where i and j represent two compactifying indices. Constraints eq. (C.4) and eq. (C.5) can

be solved as

Ēi =

(
sinh ρ du

dρ

)
, Ω̄ij = cosh ρ

(
0 du

−du 0

)
, f0 = cosh ρ , N1 = 0 , N2 = sinh ρ .

The metric in (d+ 3)-dimension can be written as

ds2
AdSd+3

= cosh2 ρ (ds2
AdSd+1

) + d ρ2 + sinh2 ρ du2. (C.10)

One can easily generalize this for an arbitrary k.
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