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We describe an application of the Monte Carlo method to the Janus deformation of the black brane 
background. We present numerical results for three and five dimensional black Janus geometries 
with planar and spherical interfaces. In particular, we argue that the 5D geometry with a spherical 
interface has an application in understanding the finite temperature bag-like QCD model via the AdS/CFT 
correspondence. The accuracy and convergence of the algorithm are evaluated with respect to the grid 
spacing. The systematic errors of the method are determined using an exact solution of 3D black Janus. 
This numerical approach for solving linear problems is unaffected initial guess of a trial solution and can 
handle an arbitrary geometry under various boundary conditions in the presence of source fields.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In this note, we shall consider various black Janus geometries 
numerically in three and five dimensional spaces. Janus geometries 
are dual to interface (conformal) field theories [1,2],1 which are 
well-controlled deformations of the AdS/CFT correspondence [4]. 
A black Janus geometry is dual to the finite temperature version 
of the corresponding interface (conformal) field theory. While an 
exact solution for the 3D black Janus geometry is available [5,6], 
we shall numerically reconsider it for a geometric interpretation of 
Monte Carlo (MC) method. In five dimensions, we shall consider 
two cases: one with a planar interface and the other with a spher-
ical interface. In the latter, the boundary value of the scalar field, 
whose exponential is corresponding to the Yang–Mills (YM) cou-
pling squared divided by 4π , has a smaller value inside the sphere 
than outside. Its dual field theory, whose finite-temperature coun-
terpart shall be considered below, resembles the MIT bag model in 
QCD [7].
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As for the numerical analysis, we shall use the standard MC 
method [8] (see [9] for a general review) to solve the scalar field 
equations in the black brane background which are elliptic par-
tial differential equations (PDEs). The choice of the MC method is 
conceptually motivated by the following considerations. In the MC 
method for a PDE, an estimate to the solution at each site is evalu-
ated with an average of samples of boundary values by generating 
a sufficiently large number of random walks each of which starts 
from the original site and ends at one of the boundary sites. The 
direction of the movement in each step of the random walk will 
be chosen randomly with respect to the probabilities determined 
by the associated PDE. As we will see, the probabilities at each 
site fully reflect the underlying geometry and hence these random 
walks may be regarded as processes exploring geometric land-
scapes rather efficiently. This feature coins the name of “geometric 
MC method” and is the reason why this MC method provides an 
interesting framework for the numerical study of gravity problems. 
Adding to this, the independence between random walks allows 
high performance parallel computing to speed up the convergence 
of the MC simulations. Along with improved computational capa-
bilities, this MC method has some advantages compared to other 
numerical methods. One can use our MC method on gravitational 
problems with arbitrary geometries with various boundary con-
ditions. This approach for solving linearized equations does not 
require any trial configuration.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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This paper is organized as follows. In sec. 2, we describe a theo-
retical background for the linearized black Janus. Numerical details 
of our geometric MC method are discussed in sec. 3. In sec. 4, we 
present our numerical analysis of 5D black Janus with planar and 
spherical interfaces, followed by concluding remarks in sec. 5.

2. Black Janus deformations to the leading order

In this note, we shall consider the Einstein-scalar system with 
a negative cosmological constant described by the action

I = − 1

16πG

∫
ddx

√
g

[
R − gab∂aφ∂bφ + (d − 1)(d − 2)

�2

]
(2.1)

where � is the AdS radius scale which we shall set to be unity for 
our numerical study below. For d = 3 and 5, this system can be 
consistently embedded into the type IIB supergravity and, hence, 
via the AdS/CFT correspondence, microscopic understanding of 
dual CFTd−1 can be given [1]. In particular, in five dimensions, the 
dual CFT4 is identified with the well known N = 4 SU(N) super-
Yang–Mills (SYM) theory [4]. The scalar field originated from the 
dilaton of the type IIB supergravity is dual to the Lagrange-density 
operator of the SYM theory, whose boundary value corresponds to 
the logarithm of the YM coupling squared divided by 4π in the 
field-theory side.

The finite-temperature black brane background is given by

ds2 = 1

z2

[
(1 − zd−1)dτ 2 + dz2

1 − zd−1
+ dx2

1 + dx2
2 + · · · + dx2

d−2

]

(2.2)

with a trivial scalar field φ = φ0. By requiring the regularity of 
geometry around z = 1 in (τ , z) space, the period of τ -direction 
angle variable can be identified, whose inverse is the Gibbons–
Hawking temperature of the boundary system, T = (d − 1)/(4π�). 
This black brane background is dual to the finite-temperature ver-
sion of CFTd−1 on R × R

d−2. The temperature may be scaled to 
other values by appropriate scaling transformations but it plays a 
role of unique reference scale in this pure black brane background.

In this work, we shall consider various Janus deformations of 
the above black brane background. The Janus deformation in the 
bulk involves a scalar field whose boundary values jump from one 
to another across an interface. The dual boundary system is de-
scribed by an interface CFT where its original CFT is deformed by 
an exactly marginal operator which is dual to the bulk scalar field. 
From the viewpoint of the boundary, its coupling jumps across the 
interface from one value to another whose detailed identification is 
subject to the standard dictionary of the AdS/CFT correspondence. 
In d = 3, to the leading order of the deformation parameter, the 
profile of the scalar field is governed by

(1 − X2)∂X

[
(1 − X2)∂Xφ

]
+ 4p(1 − p)∂2

pφ − 4p∂pφ = 0 (2.3)

where we introduce new coordinates (X , p) by X = tanh x1 and 
p = z2. Here we shall consider the case of a single interface which 
is located at x1 = X = 0. Since the constant solution φ = φ0 can be 
added freely, the Janus boundary condition can be given as

φ(X,0) = γ sign(X) (2.4)

where γ is our deformation parameter referred to as an ‘inter-
face coefficient’. Of course one may consider the case of multiple 
interfaces [6] but here we would like to focus on the case of a sin-
gle interface. Since the leading order is linear, we shall omit the 
γ dependence for the simplicity of our presentation. Of course 
the validity of our approximation requires γ � 1 and our nu-
merical result for the scalar profile should be understood with an 
extra multiplication factor of γ throughout this note. The bound-
ary condition at X = ±1 then becomes φ(±1, p) = ±1. On the 
horizon side, one may impose the ‘Neumann boundary condition’ [√

1 − p ∂pφ(X, p)
]∣∣

p=1 = 0. Note that the (τ , p) plane of the black 
brane geometry has a shape of an infinite sized disk whose center 
is located at p = 1. Near this center 1 − p ∼ 0, the distance from 
the center is approximately given by s ∼ √

1 − p. Then the above 
boundary condition follows from the Neumann boundary condi-
tion ∂sφ

∣∣
s=0 = 0 with respect to the distance s, which ensures the 

smoothness of our scalar profile at s = 0. Below we shall replace 
this boundary condition by a smoothness condition of the scalar 
field at p = 1 which basically allows us to Taylor-expand φ(X, p)

around p = 1 to some orders, whose details will be further speci-
fied in our numerical study below. We shall refer to this as a ‘free 
boundary condition’.

Now note that our system possesses a Z2 symmetry φ(X, p) =
−φ(−X, p). So the problem can be reduced to solving the differ-
ential equation restricted in the region of X ≥ 0 with the boundary 
condition at X = 0 specified by φ(0, p) = 0. In this d = 3 case, an 
exact solution can be found as [5]

φ = γ
X√

X2 + p(1 − X2)
(2.5)

Even an analytic black Janus solution including the full gravita-
tional back-reaction has been found in [5]. Thus this 3D problem 
will serve as a nice testing ground for the methods we use for our 
numerical study below.

Now let us turn to our main theme which is the d = 5 case. This 
is relevant to the problem of understanding properties of N = 4
SYM theory. Especially in its finite temperature version, it has 
been argued to be useful in understanding certain aspects of the 
real-world QCD although its full justification is not that straight-
forward [10].

Again in the probe limit, the 5D scalar equation is reduced to(
∂2

x1
+ ∂2

x2
+ ∂2

x3

)
φ + 4p(1 − p2)∂2

pφ − 4(1 + p2)∂pφ = 0 (2.6)

where p = z2 as before. We shall first study a Janus deforma-
tion involving a single planar interface located at x1 = 0 which 
has translational symmetries along x2 and x3 directions. Thus with 
∂x2φ = ∂x3φ = 0, the scalar profile is governed by

(1 − X2)∂X

[
(1 − X2)∂Xφ

]
+ 4p(1 − p2)∂2

pφ − 4(1 + p2)∂pφ = 0

(2.7)

where we introduce X by X = tanh x1 as before. For this pla-
nar interface, we have the boundary conditions φ(0, p) = 0, 
φ(X, 0) = φ(1, p) = 1 together with the Neumann boundary con-
dition 

[√
1 − p ∂pφ(X, p)

]∣∣
p=1 = 0, which can be replaced by the 

free boundary condition at p = 1 as before. We shall solve the 
equation for the half region of X ≥ 0 utilizing the underlying Z2
symmetry. Below we shall pay a particular attention to the hori-
zon profile, φ(X, 1), of our scalar field to see how the horizon is 
colored by the scalar hair.

Next we would like to consider a bag-like configuration as 
an application of the Janus deformation of the black brane back-
ground. For this, we introduce a boundary radial coordinate r de-

fined by r =
√

x2
1 + x2

2 + x2
3 and impose the boundary condition 

φ(r, 0) = −γ θ(R −r) where θ(x) denoting the Heaviside step func-
tion. This boundary condition describes a bag-like model where 
the YM coupling g2

Y M = 4π eφ(r,0)+φ0 in the region of r ≤ R be-
comes weaker than the one outside the bag. Later we shall argue 
that hadrons can be realized by a fundamental (QCD) string cor-
responding to a Wilson line connecting quark to anti-quark in the 
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YM theory side. Redefining S = r φ with X = tanh r, one finds the 
deformation is described by

(1 − X2)∂X

[
(1 − X2)∂X S

]
+ 4p(1 − p2)∂2

p S − 4(1 + p2)∂p S = 0

(2.8)

which is precisely the same form as (2.7). Setting γ = 1 by utiliz-
ing the linearity of the problem, we have the boundary conditions 
S(0, p) = S(1, p) = 0, S(X, 0) = −arctanhX θ(tanh R − X) together 
with the free boundary condition at p = 1. In this configuration, 
we have one more scale given by the bag size R in addition to 
the temperature T of the black brane. Thus the underlying scale 
symmetry is broken leading to a potentially richer dynamics which 
may depend on the parameter RT .

3. 3D black Janus by Monte Carlo

In this section, we shall give a detailed description of the MC 
method to solve the scalar equation (2.3), which has a nice ge-
ometrical interpretation in the gravity problem as discussed in 
the introduction. We begin with discretizing (2.3) with boundary 
conditions φ(0, p) = 0, φ(1, p) = φ(X, 0) = 1 and the free bound-
ary condition at the horizon. The finite difference approximations 
(FDA) based on the Taylor expansion to the derivatives in (2.3) are 
given by

∂Xφ → φi+1, j − φi−1, j

2 	X
, ∂2

Xφ → φi+1, j − 2φi, j + φi−1, j

	X2
, (3.1)

∂pφ → φi, j+1 − φi, j−1

2 	p
, ∂2

pφ → φi, j+1 − 2φi, j + φi, j−1

	p2
, (3.2)

where i and j correspond to the X and p coordinates of site (i, j)
for a two-dimensional rectangular lattice with the grid spacing of 
	X = 1/N X and 	p = 1/Np , respectively. Then the FDA represen-
tation for the 3D Janus equation (2.3) can be written as

φi, j = P (i + 1, j) φi+1, j + P (i − 1, j) φi−1, j

+ P (i, j + 1) φi, j+1 + P (i, j − 1) φi, j−1, (3.3)

where

P (i ± 1, j) = (1 − X2
i )2/	X2 ∓ Xi(1 − Xi)

2/	X

Di, j
(3.4)

P (i, j ± 1) = 4p j(1 − p j)/	p2 ∓ 2p j/	p

Di, j
, (3.5)

and Di, j = 2(1 − X2
i )2/	X2 +8p j(1 − p j)/	p2. This form allows us 

to interpret the coefficients P (i ± 1, j) and P (i, j ± 1) as the prob-
abilities that a random walker moves to neighboring sites along X
and p directions. Since they are determined by the metric, which 
is the black brane metric (2.2) in this case, it is clear that they 
carry the information of the geometry of the problem. Note that 
the summation of the probabilities gives unity as it should be.

Reformulating the problem in this way, we are naturally led to 
solve the equation using the MC method. The solutions φi, j are 
determined through samples of random walkers with the prob-
abilities of (3.4) and (3.5). MC updates consist of interchange of 
positions of a random walker between a given site and one of its 
four neighboring sites. Updates are sequentially attempted along X
and p directions until the walker arrives at a boundary. If an up-
date is accepted according to the following hopping rule:
ξ ∈ (0, P (i + 1, j)] : increase i by 1

ξ ∈ (P (i + 1, j), P (i + 1, j) + P (i − 1, j)] : decrease i by 1

ξ ∈ (P (i + 1, j) + P (i − 1, j),

P (i + 1, j) + P (i − 1, j) + P (i, j + 1)] : increase j by 1

ξ ∈ (P (i + 1, j) + P (i − 1, j) + P (i, j + 1),1]
: decrease j by 1

a new site is stored in a previous site. Here, ξ ∈ (0, 1] is a uniform 
random number. Denote n(i, j),â as the number of arrivals that a 
walker starting from a site (i, j) reaches to a boundary site â out 
of total NMC Monte-Carlo arrivals. The set {n(i, j),â} is the “exper-
imental” data obtained by the random walker after exploring the 
geometric landscape. Our measurements of the solutions are then 
evaluated with the estimator

φi, j =
∑

â

n(i, j),â

NMC
φâ (3.6)

We perform the same procedure for all (i, j) which consists of one 
MC block. We then repeat this many times for the sake of error 
estimation and numerical stability.

In fact, MC methods have been one of standard ways to solve 
PDEs numerically [8]. There are several advantages to using MC 
simulations. While direct or iterative numerical approximations for 
PDEs often suffer from requiring an adequate initial guess of a trial 
solution, the use of MC sampling does not require any trial solution 
and leads to the advantage of straightforward parallel computing. 
The MC method we use can deal with an arbitrary geometry and 
be extended to nonlinear boundary value problems with various 
boundary conditions.

While most applications have been to Dirichlet boundaries, this 
approach can also be applied to more complicated boundary con-
ditions such as Neumann and free boundary conditions where the 
Dirichlet boundaries are determined through sampling to evaluate 
appropriate φâ ’s regardless of details of equations. In our problem, 
we have a free boundary condition at the horizon that φ(X, 1) is 
smooth. This condition can be implemented by requiring that the 
second order derivatives should be of the order 	p at the horizon, 
i.e.,

(φi,N p − 2φi,N p−1 + φi,N p−2)

− (φi,N p−1 − 2φi,N p−2 + φi,N p−3) ∼ O(	p3) , (3.7)

which can be put to zero in the FDA employed here. Together with 
(3.6) applied to j = Np − 1, Np − 2 and Np − 3, (3.7) becomes a set 
of linear equations for φi,N p . With φi,N p determined, the boundary 
reduces effectively to Dirichlet and we can proceed to conduct MC 
estimations for the rest of the sites.

Fig. 1 shows the numerical solution for the 3D scalar profile 
which is indistinguishable from the exact solution (2.5) within the 
resolution of our figure. In particular, the profile at the horizon 
correctly behaves as φ(X, 1) = X , which confirms the effective-
ness of the free boundary condition (3.7) adopted here. On the 
right, we also plot the average of the relative errors of the nu-
merical solution, 	φ ≡ 1

N X N p

∑
i, j〈|(φMC

i, j −φexact
i, j )/φexact

i, j |〉 over 500 
MC blocks, for various lattice sizes. The plot shows that the MC 
method produces fairly good numerical solutions nicely converg-
ing to the exact solution. Note that the error can be reduced by 
asymmetric discretization. Indeed, it decreases as a power law in 
	X/	p. This is because of the singular nature of the solution at 
the origin where the field value abruptly changes in the p direc-
tion as is evident from the boundary conditions φ(0, p) = 0 and 
φ(X, 0) = 1.
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Fig. 1. Numerical solution of the 3D scalar field is depicted on the left. Relative error is depicted on the right as a function of 	X/	p with the sampling of 500 blocks. Each 
block contains NMC = 5000 random walkers. Circles, squares, diamonds and triangles are for 	X = 0.1, 0.05, 0.025 and 0.0125, respectively.

Fig. 2. Numerical solution of the Janus scalar field in 5D with a planar interface is depicted on the left. Corresponding horizon profile φ(X,1) is depicted on the right.
Closing this section, we remark that we have also tried other 
numerical methods such as the relaxation method and the pseudo-
spectral method, and obtained solutions with accuracies compara-
ble to MC solutions.

4. 5D black Janus

In five dimensions, we consider two kinds of the interfaces. One 
is planar and the other spherical.

Black Janus with planar interface For the planar interface sitting at 
x1 = 0, the corresponding scalar field is governed by (2.7). In the 
FDA of the previous section, we obtain the same form of difference 
equation (3.3) with the following probabilities determined by the 
black brane geometry,

P (i ± 1, j) = (1 − X2
i )2/	X2 ∓ Xi(1 − Xi)

2/	X

Di, j
(4.1)

P (i, j ± 1) = 4p j(1 − p2
j )/	p2 ∓ 2(1 + p2

j )/	p

Di, j
, (4.2)

where Di, j = 2(1 − X2
i )2/	X2 + 8p j(1 − p2

j )/	p2.
The MC solution and the profile at the horizon is presented in 

Fig. 2. In this case, we do not have the exact solution for compar-
ison, but have checked that the MC solution shows a converging 
behavior as we increase the number of MC blocks. The overall 
shape of the solution is similar to Fig. 1. This is natural because, 
at the three sides, Dirichlet boundary conditions are imposed with 
the same boundary values as the three-dimensional case. At the 
horizon, however, the field is allowed to take any finite value and 
hence shows a nonlinear profile in Fig. 2 in contrast with the pre-
vious case.
Bag-like model and string dynamics Here we shall solve the equa-
tion (2.8), which is for the scalar profile involving the spherical 
interface. It is formally the same as (2.7) and, thus, its MC prob-
abilities from (i, j) to its neighboring sites are given precisely by 
(4.1) and (4.2). The corresponding boundary conditions are speci-
fied in section 2. Since the probabilities are the same as those of 
the planar case, we simply run the same MC code and then insert 
new boundary data into (3.6) replacing the old ones.

In Fig. 3, we present the resulting scalar profiles for interface 
radii R = 0.2, 0.6, and 0.8, respectively. At the boundary of ge-
ometry (p = 0), the sharp change of scalar values merely reflects 
our choice of bag-like boundary conditions. Outside the interface 
sphere, we can see that the scalar values approach zero and the 
corresponding YM coupling is identified with gout

Y M = √
4πe

1
2 φ0

whereas gin
Y M = e− 1

2 γ gout
Y M reinstating our interface coefficient γ . 

For large γ , the coupling inside is significantly weaker than the 
one outside. The horizon profiles of the scalar field are also de-
picted in Fig. 3. One can see that the sharp change at p = 0 is now 
smoothened and the absolute values of scalar at the horizon lo-
cation X become smaller than that of the boundary location, i.e. 
|φ(X, 1)| < |φ(X, 0)|. Since RT is the only scale-independent pa-
rameter of our model, the larger R with fixed T can be traded by 
the larger T with fixed R describing essentially the same physics.

In our bag-like model, we are interested in the setup where 
one dials the temperature while fixing bag radius to the scale of 
1/�Q C D . Of course in order to get any quantitative results, one has 
to consider the full back-reacted geometry, which is beyond the 
scope of our present paper. Here instead we would like to briefly 
discuss only qualitative aspects of our finite-temperature, bag-like 
model. As a probe, one may introduce a pair of quark and anti-
quark connected by a Wilson line operator, which is dual to a bulk 
string in the geometric side [11]. In the heavy limit of quark mass, 
the string worldsheet ends on the boundary of bulk geometry. By 
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Fig. 3. The first three are numerical solutions of 5D scalar field with the interface radii R = 0.2, 0.6, and 0.8, respectively. The last graph shows the corresponding horizon 
profiles again for R = 0.2, 0.6, and 0.8, respectively.
introducing D7 branes in the bulk, the string may end on these D7 
branes and the constituent quark masses can be made finite [12]. 
In any cases the worldsheet dynamics is described by the following 
Lagrangian [1],

L = − 1

2π

∫
dσ1eφ/2

√
−det ∂α Xa∂β Xb gab , (4.3)

where α, β = 0, 1 are for the worldsheet coordinates (σ0, σ1) 
and Xa(σ0, σ1) describe the embedding of worldsheet to the bulk 
spacetime. The crucial part for us is that the effective string ten-
sion is proportional to eφ/2, so that the region of smaller effective 
tension is dynamically preferred. Thus in our bag-like model, the 
quark–antiquark pair inside the bag is dynamically preferred which 
is in accordance with the main idea of the MIT-bag model.2 Next 
to see the finite temperature effect, we note that, as the tempera-
ture gets larger, the effective bag radius RT gets larger. The Debye 
screening of quark charges will occur within the bag, where ef-
fective separation of quark–antiquark exceeds the Debye length 
scale [13]. In this screening phase, the configuration of two dis-
joint strings (emanated respectively from quark and anti-quark) 
ending on the horizon is preferred to that of connected one. Even-
tually the bag will melt, which will lead to the YM plasma phase 
at high enough temperatures, whose details are beyond scope of 
the present paper.

5. Discussion

In this note, we have found numerical solutions for linearized 
scalar equations in three and five dimensions with various Janus 
boundary conditions. By comparing our numerical result with the 
known exact solution in three dimensions, we found a good agree-
ment confirming validity of our geometric MC method. In five di-

2 However, unlike the MIT-bag model, our bag-like model is not confining outside 
the bag, since the underlying N = 4 SYM theory is non-confining, and instead its 
coupling gets stronger whose strength one may adjust freely.
mensions, numerical solutions with two different Janus boundary 
conditions (one with a planar shape and the other with a spherical 
shape) have been obtained. In our bag-like model with a spherical 
interface, we argued that the quark–anti-quark pair is dynamically 
preferred inside the bag as in the original MIT-bag model. We also 
discussed temperature dependence of the system as an application 
of numerical result.

It will be desirable to extend our method to nonlinear problems 
including full back reaction of the gravity sector. Once the back 
reaction is included, one may study various quantitative aspects of 
our 5D system including spectrum of mesons and their melting at 
finite temperature. Further studies are required in these directions.
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