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We examine if the cosmological relaxation mechanism, which was proposed recently as a new solution to
the hierarchy problem, can be compatible with high reheating temperature well above the weak scale. As the
barrier potential disappears at high temperature, the relaxion rolls down further after the reheating, which
may ruin the successful implementation of the relaxationmechanism. It is noted that if the relaxion is coupled
to a dark gauge boson, the new frictional force arising from dark gauge boson production can efficiently slow
down the relaxionmotion, which allows the relaxion to be stabilized after the electroweak phase transition for
a wide range of model parameters, while satisfying the known observational constraints.
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I. INTRODUCTION

Cosmological relaxation of the Higgs mass has been
proposed recently as an alternative solution to the weak
scale hierarchy problem [1].1 In this scenario, a pseudo
Nambu-Goldston boson ϕ is coupled to the Standard
Model Higgs doublet h, scanning the Higgs mass from a
large initial value to the small present value. This scalar
field, often referred to as the relaxion, has a potential
including the piece enforcing the relaxion to move to scan
the Higgs mass and also a periodic barrier potential to stop
the relaxion at the position giving m2

h ¼ −ð89 GeVÞ2.
More specifically, the relevant scalar potential is given by

�
Λ2 −

Λ2

feff
ϕ

�
jhj2 − c0

Λ4

feff
ϕþ Vb; ð1Þ

where Λ denotes the Higgs mass cutoff scale, feff
corresponds to the relaxion excursion required to scan
the Higgs mass-square from Λ2 to −ð89 GeVÞ2, c0 is a
positive coefficient of order unity as suggested by the
naturalness argument, and the barrier potential Vb generi-
cally takes the form

Vb ¼ −Λ4
bðhÞ cosðϕ=fÞ

with a Higgs-dependent amplitude

Λ4
bðhÞ ¼ μ4−nb hn;

where μb is determined by the scale where Vb is generated,
as well as by the involved couplings. Imposing the sta-
tionary condition to the potential (1), one finds

feff
f

∼
Λ4

Λ4
bðh ¼ vÞ

1

sinðϕ0=fÞ
; ð2Þ

where v ¼ 246 GeV and sinðϕ0=fÞ ∼ v2=ðv2 þ Λ2
bÞ [19]

for the relaxion vacuum value ϕ0 in the present Universe.
There can be two ways to generate the barrier potential

as discussed in the literatures [1–3]. The minimal scenario
is to generate Vb through the relaxion coupling to the
QCD anomaly, i.e. ϕG ~G=32π2f, which would result in
Λ4
b ∼ yuhΛ3

QCD, where ΛQCD ∼ 200 MeV is the QCD scale
and yu ∼ 10−5 is the up-quark Yukawa coupling. In this
case, ϕ0=f is identified as the QCD vacuum angle θQCD and
therefore constrained as j sinðϕ0=fÞj≲ 10−9. Alternatively,
the barrier potential can be generated by a new physics
around the weak scale, yielding for instance Λ4

b ¼ μ2bjhj2
with μb around the weak scale.
To implement the relaxation mechanism, the amplitude

of the barrier potential is required to be bounded as
Λ4
bðh¼vÞ≲Oð16π2v4Þ [1–4], where v ¼ 246 GeV is the

Higgs vacuum value in the present Universe. Then the
stationary condition (2) shows that the relaxion mecha-
nism transmutes the weak scale hierarchy Λ ≫ v to
another hierarchy feff ≫ f. Although the latter hierarchy
can be technically natural, it may require an explanation
for its origin. This issue has been addressed in [21,22],
proposing a scheme to generate an exponential hierarchy
feff=f ∼ eN based on models with N axions [23,24].
A key ingredient of the relaxation scheme is a mecha-

nism to dissipate away the relaxion kinetic energy which is
originating from the initial potential energy of OðΛ4Þ. It is
usually assumed that the relaxion loses its kinetic energy by
the Hubble friction during the inflationary period. Then
the scheme requires a rather large number of inflationary
e-foldings [1], which is estimated as [19]

Ne ∼
Λ4

Λ4
b

�
v2 þ Λ2

b

v2

�
2

ð3Þ

for the case that the barrier potential is induced by new
physics, and

1See Refs. [2–20] for subsequent studies on the viability of the
cosmological relaxation scenario.
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Ne ∼
Λ4

θQCDyuvΛ3
QCD

≳ 1024
�

Λ
TeV

�
4

ð4Þ

for the other case that the barrier potential is induced by low
energy QCD. The above result and the relaxion scale
hierarchy (2) show that the scenario with QCD-induced
barrier potential requires a huge e-folding number and also
a big hierarchy among the relaxion scales. As a too large
e-folding number might cause a severe fine-tuning prob-
lem, in the following we will focus on the scenario that the
barrier potential is generated by new physics around the
weak scale, yielding

Vb ¼ −Λ4
bðhÞ cosðϕ=fÞ ¼ −μ2bjhj2 cosðϕ=fÞ ð5Þ

with μb ≲Oð4πvÞ. By the same reason, we will be more
interested in the case that μb is somewhat close to the
weak scale.
In the relaxation scenario, to avoid a fine-tuning of the

initial condition, the relaxion is assumed to be stabilized
before the inflation is over. If the temperature during the
reheating phase is well below the weak scale which
corresponds to the scale where the barrier potential is
generated, the relaxion dynamics after the reheating is
trivial. It stays there without changing the Higgs mass
selected during inflation. However, if the Universe experi-
ences a high temperature T ≫ v after inflation, the electro-
weak gauge symmetry is restored and the barrier potential
disappears. Then the relaxion starts to roll again until the
temperature cools down to a critical temperature Tc ∼ v
where the barrier potential is developed again, and such
subsequent evolution may ruin the successful implementa-
tion of the relaxation mechanism. On the other hand, high
reheating temperature TR ≫ v is often favored for viable
cosmology, in particular for baryogenesis. It is therefore an
interesting question if the cosmological relaxation mecha-
nism can be compatible with such high reheating temper-
ature. In this paper, we wish to examine such possibility
within the relaxion scenario inwhich the barrier potential (5)
is generated by new physics near the weak scale.2

To proceed, let us first consider the case that there is no
additional dissipation of the relaxion energy other than
those by the Hubble friction. During the period when Vb is
negligible, e.g. for the radiation-dominated period with
T > v, solving the equation of motion determined by (1),
one finds that the relaxion speed behaves as

_ϕðtÞ≃ Λ4

feff
t≃ Λ4

b

f

�
90

4π2g�ðTÞ
�

1=2Mpl

T2
; ð6Þ

where Λ4
b ≡ Λ4

bðh ¼ vÞ ¼ μ2bv
2, g�ðTÞ is the number of

relativistic degrees of freedom at T, and we use the relation

(2) for the last expression. As the relaxion speed is
increasing in time, to stop the relaxion by the barrier
potential developed around the time tc, one needs

_ϕðtcÞ≲ Λ2
b: ð7Þ

One can also make sure that if this condition is satisfied, the
relaxion is successfully stabilized within a few Hubble time
from tc with a total excursionΔϕ≲OðfÞ, and therefore the
corresponding change of the Higgs mass is negligible. On
the other hand, the condition (7) puts a lower bound on the
relaxion decay constant f, given by

f
Mpl

≳
�

90

4π2g�ðvÞ
�

1=2 Λ2
b

v2
; ð8Þ

where we used Tc ∼ v. Although it is possible that the
dynamics to generate Vb involves a small coupling, so
Λb ≪ v, such a small Λb is disfavored as it requires a
bigger e-folding number (3) for a given value of the Higgs
mass cutoff Λ. For Λb ∼ v which is more favored in view of
(3), the bound (8) suggests that f should be at least
comparable to the Planck scale.
The above observation implies that one needs an addi-

tional mechanism to dissipate the relaxion energy to make
the scheme compatiblewithTR ≫ v for themore interesting
parameter range withΛb ∼ v and f ≪ Mpl. It is well known
that a rolling scalar fieldϕ can lose its kinetic energy through
gauge field production induced by the coupling,

1

4

ϕ

F
Xμν

~Xμν; ð9Þ

where Xμν ¼ ∂ ½μXν� is an Abelian gauge field strength and
~Xμν is its dual. In the presence of this coupling, a rolling ϕ
develops tachyonic instability ofXμ, causing an exponential
growth of Xμ for certain range of wave number. This
provides an effective frictional force to the motion of ϕ,
which has been applied recently to the relaxion dynamics in
the early Universe [25].3 In this paper, we explore the
possibility of high reheating temperature in the relaxation
scenario in which the coupling (9) is mainly responsible for
the relaxion energy dissipation after reheating. We focus
only on the dynamics of relaxion after reheating, by
assuming that the electroweak scale is already selected by
relaxion during the inflationary period as in the original
cosmological relaxion scenario [1]. As we will see, in case
that Xμ is identified as the Uð1ÞY gauge boson of the

2The possibility of high reheating temperature was discussed
in [1] for the case of QCD-induced barrier potential.

3Identifying Xμ as the electroweak gauge bosons (Wa
μ for

SUð2ÞL and Bμ for Uð1ÞY) whose masses are determined by the
Higgs vacuum value, Ref. [25] argued that a particular form of the
coupling (9), i.e. ϕðg2Wa

μν
~Waμν − g02Bμν

~BμνÞ, can provide Higgs-
depedent back reaction to relaxion evolution, stabilizing the
relaxion field at the desired value giving hhi ¼ v.
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Standard Model (SM), due to its large thermal mass, the
gauge field production is not efficient enough to slow down
the relaxion motion in most of the parameter space allowed
byother constraints.On the other hand, ifXμ is identified as a
dark gauge boson with negligible thermal mass, the gauge
field production can efficiently slow down the relaxion
motion, allowing the relaxion to be successfully stabilized
after the electroweak phase transition for a wide range of
model parameters.
This paper is organized as follows. In Sec. II, we review

the gauge field production by a rolling scalar field with the
coupling (9), and apply the results for the relaxion dynamics
at T ≫ v. Our primary concern is to identify the parameter
region which allows the reheating temperature TR ≫ v
without modifying the standard cosmology after reheating.
For this, we estimate the relaxion excursion and terminal
speed at the time when the relaxion is stopped by a barrier
potential developed at Tc ∼ v. We provide also numerical
results to cross check our analytic estimation. In Sec. III, we
discuss additional constraints on the scenario discussed in
the previous section, and Sec. IV is the conclusion.

II. RELAXION DYNAMICS WITH
GAUGE FIELD PRODUCTION

In the presence of the coupling (9), a background
evolution of relaxion develops tachyonic instability of
the Abelian gauge boson Xμ [26,27]. Let us begin with
the case without any light Uð1ÞX charged particle, in
which the gauge field production turns out most efficient.
In this case, there is no thermal mass of Xμ even at high
temperature limit, and then the equation of motion for Xμ in
the expanding Universe is given by

X″
� þ

�
k2 ∓ ak

_ϕ

F

�
X� ¼ 0; ð10Þ

where � denotes the helicity state, a is the scale factor of
the expanding Universe with the metric

ds2 ¼ dt2 − a2ðtÞdx2 ¼ a2ðτÞðdτ2 − dx2Þ;

and X0 ¼ dX=dτ and _ϕ ¼ dϕ=dt for the conformal time τ
and the physical time t. Assuming _ϕ > 0, the positive
helicity state experiences tachyonic instability for the wave
number k ≤ kmax ¼ ða _ϕ=FÞ. Using the WKB approxima-
tion, we find that the corresponding gauge field modes
grow as

XþðkÞ ∼
1ffiffiffiffiffi
2k

p exp

�Z
τ
dτ0Ωðk; τ0Þ

�
; ð11Þ

with the growth rate determined as

Ω2 ¼ ak
_ϕ

F
− k2 ð12Þ

for Fðϕ̈þH _ϕÞ2= _ϕ3 ≤ k=a ≤ _ϕ=F. Here the lower bound
on k is required for the validity of WKB approximation,
jΩ0=Ω2j ≪ 1. Note that the gauge field production is
dominated for the modes with k ∼ kmax.
So a rolling relaxion produces gauge fieldswith comoving

wave number k ≤ kmax, and those gauge fields will even-
tually modify the evolution of relaxion. To see the interplay
between the gauge field production and the relaxion evolu-
tion, we consider the relaxion equation of motion

d _ϕ
dt

¼ −3H _ϕ −
∂V
∂ϕ −

1

4Fa4
hXμν

~Xμνi; ð13Þ

where the ensemble average of gauge fields is given by

1

4F
hXμν

~Xμνi ¼ 1

4Fπ2

Z
dkk3

d
dτ

ðjXþj2 − jX−j2Þ

∝ exp

�
2

Z
τ
dτ0Ωðkpeak; τ0Þ

�
; ð14Þ

where kpeakðτÞ ¼ kmaxðτÞ=2 is the wave length at which the
gauge field production is maximized. The above equation of
motion shows that the produced gauge fields provide addi-
tional frictional force to the relaxion motion. Then the
relaxion speed reaches at its terminal value around the time
when the accelerating force ∂V=∂ϕ in (13) is balanced by the
last frictional force term. We already noticed that the gauge
field production ismost efficient for k ∼ kmax. Then, equating
(14) with ∂V=∂ϕ, the relaxion terminal speed is estimated as

_ϕterm ¼ ξHF; ð15Þ
where the dimensionless coefficient ξ mildly depends on
various factors such as ð∂V=∂ϕÞ,F, and the initial condition
for Xμ. We performed a numerical analysis to examine the
relaxion evolution for the model parameters in Table I and
depict the result in Fig. 1. Our result shows that the relaxion
speed indeed approaches the form (15) with ξ≃ 25 as
indicated in Fig. 2.
We can also estimate the time scale of gauge field

production. Right after the reheating, the relaxion field
begins to roll down with a speed

_ϕ≃ 2

5

Λ4
b

f
t½1 − ðtR=tÞ5=2�; ð16Þ

where tR denotes the time of reheating. Gauge field
production due to this relaxion motion becomes important
when

TABLE I. Sample model parameters for numerical analysis.

Λ Λb feff f F

104 GeV 10 GeV 1019 GeV 107 GeV 106 GeV
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Z
τ
dτ0Ωðkpeak; τ0Þ ¼ Oð1Þ;

for which the frictional force term ∝ hX ~Xi in (13) is
not negligible anymore. Imposing this condition to the
solution (16), we find the gauge field production time scale
is given by4

tp ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fF=Λ4

b

q
: ð17Þ

Soon after tp, the relaxion speed approaches its terminal
value given by (15). Since this terminal speed is decreasing

in time, the relaxion field keeps losing its kinetic energy,
and its speed eventually becomes smaller than the height of
the barrier potential developed at T ¼ Tc ∼ v. Assuming
that the Universe is radiation-dominated over the period
under consideration, we estimate the temperature Tb when
_ϕ2ðTbÞ ¼ Λ4

b as

Tb ¼
�

90

π2g�ðTbÞ
�

1=4
�
MplΛ2

b

ξF

�
1=2

: ð18Þ

If Tb > Tc, _ϕðTcÞ is small enough to be stopped by the
barrier potential right after the barrier potential is developed
at Tc ∼ v. On the other hand, if Tb < Tc, the relaxion rolls
until the lower temperature Tb when its speed is further
reduced down to Λ2

b. Then the temperature when the
relaxion is finally stabilized is given by

Ts ¼ minðTb; TcÞ ¼ minðTb; vÞ; ð19Þ
where we set Tc ¼ v for simplicity.
Having determined the terminal speed, we can now

compute the relaxion excursion after the reheating, which is
given by5

Δϕ≃ 1

2
ξF lnðHðtpÞ=HðtsÞÞ; ð20Þ

where ts is the time when the relaxion is finally stabilized,
i.e. when T ¼ Ts.
The dark gauge bosons produced by rolling relaxion

eventually contribute to the dark radiation at the time of the
big bang nucleosynthesis (BBN). Imposing the observa-
tional bound on dark radiation, ΔNeff ≲ 0.3, the energy
density of X gauge bosons at ts is bounded roughly as

ρXðtsÞ≃ 1

a4ðtsÞ
Z

ts

tp

dt0a4ðt0Þ _V ≃ Λ4
b
ξF
4f

≲ T4
s : ð21Þ

Note that this bound from dark radiation ensures that the
Universe is radiation-dominated over the period from the
beginning of reheating to the restabilization of relaxion.
From this condition, we finally find a lower bound on f=F as

f
F
≳ ξ

4

Λ4
b

T4
s
; ð22Þ

where ξ≃ 25.
Up to this point, we assumed that there is no light Uð1ÞX

charged particle in the thermal plasma to ensure that we can

FIG. 2. The black line corresponds to the relaxion terminal
speed at T ¼ 1 TeV when there is dark plasma with temperature
Td ¼ 10−5g0T=gX , providing a thermal mass of Xμ bigger than
the Hubble expansion rate, while the red line is the terminal speed
at T ¼ 100 TeV in the absence of dark plasma. The model
parameters chosen here are described in Table I. These numerical
results are well matched to the expression _ϕ ¼ ~ξFHðmD=HÞ2=3
with ~ξ≃ 5.2, and _ϕ ¼ ξFH with ξ≃ 25.

FIG. 1. The evolution of relaxion speed for the model param-
eters of Table I, when there is no Uð1ÞX charged particle in the
background thermal plasma. The relaxion speed increases as
_ϕ≃ Λ4

b=5fH, and approaches _ϕterm ≃ ξFH with ξ≃ 25 when
the temperature of the Universe is lower than 106 GeV. The
initial temperature is taken to be T� ¼ 107 GeV.

4If the inflationary Hubble scale HI < 1=tp, the friction from
gauge field production dominates over the Hubble friction during
inflationary period, which would require even larger inflationary
e-folding number for the scanning of the Higgs mass.

5Note that the reheating temperature TR usually means the
temperature when the reheating is completed, which is given by
TR ≃ 1.7g−1=4�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MplΓσ

p
where Γσ is the inflaton decay width, and

g� is the number of relativistic degrees of freedom at TR. On the
other hand, the relaxion experiences a subsequent rolling if the
maximal temperature during the reheating period, which is given
by Tmax ∼ TRðHend=HðTRÞÞ1=4 ≫ TR, is higher than the weak
scale. As the relaxion terminal speed and the excursion range are
almost independent of the initial temperature, we ignore the
difference between TR and Tmax.
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safely ignore the thermal mass of Xμ. Having a thermal
mass higher than the Hubble expansion rate can signifi-
cantly change the result as it suppresses the gauge field
production, so makes the mechanism less efficient. To
examine this issue, let us assume that there is a SM singlet
but Uð1ÞX charge particle constituting a thermal plasma
with temperature Td < T, where T is the temperature of the
SM degrees of freedom.
In the presence of dark plasma, the dispersion relation of

Xμ is changed as

ω2 − k2 þ ak
_ϕ

F
¼ Gðω; kÞ; ð23Þ

with the one loop thermal correction given by [28,29]

Gðω; kÞ ¼ m2
D
ω

k

�
ω

k
þ 1

2

�
1 −

�
ω2

k2

��
ln
ωþ k
ω − k

�
: ð24Þ

Here mD is the Debye mass of Xμ given by

m2
D ¼ g2XT

2
d

6
;

where gX is the Uð1ÞX gauge coupling. Since Abelian
gauge boson does not have a magnetic mass, the dispersion
relation still allows tachyonic modes for Ω ≪ k < kmax.
However, contrary to the previous case, the tachyonic
instability is alleviated by the thermal mass, which results
in the tachyonic gauge field modes grow as

XþðkÞ ∼
1ffiffiffiffiffi
2k

p exp
�Z

τ
dτ0Ωðk; τ0Þ

�
ð25Þ

with a reduced growth rate:

Ω
a
¼ ðk=aÞ2

m2
D

_ϕ

F
; ð26Þ

where we assumed

H < Ω=a < k=a < mD:

If Td is small enough to yield mD < H, the gauge field
growth rate is approximately given by (12), and therefore
essentially same as the case without any light Uð1ÞX
charged particle.
As in the previous case, we can estimate the gauge field

production time scale and the relaxion terminal speed for
the case with a thermal mass mD > H. We then find

tp ∼
�

κ2g02ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTpÞ

p Mplf3F3

Λ12
b

�
1=5

: ð27Þ

and

_ϕterm ≃ ~ξFHðmD=HÞ2=3; ð28Þ

where κ≡ gXTd=g0T,mD ¼ gXTd=
ffiffiffi
6

p ¼ κg0T=
ffiffiffi
6

p
and the

numerical coefficient ~ξ≃ 5.2 (see Fig. 2). As we mentioned
in the previous paragraph, this result is valid only when
mD > H. IfmD < H, the terminal speed should be replaced
with (15). Note that compared to (15), the terminal speed is
bigger by the factor ðmD=HÞ2=3, showing that a gauge field
thermal mass mD ≫ H makes the gauge field production
much less efficient, yielding a much bigger value of the
final relaxion speed. In Fig. 3, we depict the evolution of
relaxion speed, as well as the evolution of the four
quantities that appear in the relaxion equation of motion
(13) for the model parameters in Table I and the gauge field
thermal mass mD ¼ gXTd=

ffiffiffi
6

p ¼ 10−5g0T=
ffiffiffi
6

p
.6

FIG. 3. (Left) The evolution of relaxion speed when Xμ has a thermal mass bigger than the Hubble expansion rate. The initial
temperature is set as T� ¼ 520 TeV. Here the red dotted line represents _ϕ ¼ Λ4

b=5fH, while the green dotted line represents _ϕterm ¼
~ξFHðmD=HÞ2=3 with ~ξ ¼ 5.2. (Right) Evolution of the four quantities in the relaxion equation of motion (13).

6Here we assume that κ ¼ gXTd=g0T is constant during the
evolution of relaxion field. What the rolling relaxion field mostly
produces is a magnetic component of dark gauge fields. Contrary
to the electric component of dark gauge boson, the magnetic
component is not thermalized if kmax < kdiff where kdiff is a
diffusion scale given by kdiff=a ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TdH=αX

p ðαX ¼ g2X=4πÞ [30].
Throughout this paper, we consider gX ∼Oð10−1Þ so that kmax <
kdiff for a relevant range of parameter space. In this case, the
produced gauge fields do not heat up the dark sector temperature.
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Although the rate is slower than the case without thermal
mass, the terminal speed is again decreasing in time. The
temperature of the SM particles when the terminal speed
becomes comparable to Λ2

b is estimated as

Tb ∼
1ffiffiffiffiffiffi
g0κ

p
�

90

π2g�ðTbÞ
�

1=8
�
MplΛ6

b

~ξ3F3

�
1=4

; ð29Þ

and then the relaxion is finally stabilized at the temperature
Ts ¼ minðTb; vÞ. Having determined Ts, it is straightfor-
ward to find the relaxion excursion after the reheating,
which is given by

Δϕ ¼ ~ξFðmD=HÞ2=3jT¼Ts
: ð30Þ

We can impose again the constraint

ρXðTsÞ ∼
Λ4
b

f
Δϕ≲ T4

s

to avoid too much dark radiation, which yields

f
F
≳ ~ξ

Λ4
b

T4
s

�
mD

H

�
2=3

				
T¼Ts

: ð31Þ

Generically an Abelian dark gauge boson Xμ can have a
kinetic mixing with the Uð1ÞY gauge boson Bμ in the SM:

ΔL ¼ ϵXμνBμν;

which may result in a modification of our results, as well as
rich phenomenological consequences as discussed in [31].
In fact, after proper diagonalization of the kinetic and
thermal mass terms, we find that the modification due to the
kinetic mixing is suppressed by ϵ2ðk _ϕ=FÞ=T2, and there-
fore can be safely ignored.
Let us finally remark the possibility that Xμ is identified

as the Uð1ÞY gauge boson in the SM. The mechanism of
gauge field production can hardly be realized under the
working assumption of this paper if Xμ is the hypercharge
gauge boson. The above discussions can be directly applied
to the hypercharge gauge boson by setting κ ¼ 1. As is
already shown in [19,20], the relaxion window for mϕ ≳
Oð0.1 MeVÞ is strongly constrained by rare meson decay,
electric dipole moment, and supernova 1987A. Only tiny
window for the relaxion is available. Instead, we could
focus on relatively light relaxion mass,mϕ ≤ Oð0.1 MeVÞ,
while requiring

F ≳ 1010 GeV

to satisfy the bound on the relaxion-photon coupling [32].
For this size of coupling strength, the relaxion will be
stabilized well after the electroweak phase transition such

that Ts ¼ Tb. From the condition (31), the production
mechanism works only when

f
Mpl

≳ 1011 ×

�
v
Λb

�
3
�

F
1010 GeV

�
9=2

: ð32Þ

As it requires a super-Planckian relaxion decay constant,
even the Hubble friction can stablize the relaxion after the
reheating as discussed in the introduction.
Since we are discussing the hypercharge gauge boson,

the condition ΔV ≤ T4
s to avoid a too much dark radiation

can be relaxed. Instead, one might require the condition
Δϕ ≤ ðΛ2v2=Λ4

bÞf to avoid a too large change of the pre-
selected Higgs boson mass. In this case, the initial energy
density of relaxion can be as large as Λ2v2 so that the
relaxion energy density dominates the Universe before the
temperature of the Universe is decreased down to Ts. In this
case, a large portion of the entropy of the current Universe
originates from the entropy that is relased from the relaxion
condensate. Such entropy release from the relaxion con-
densate could dilute, for instance, bayon number which is
generated by high temperature dynamics, or density per-
turbation which is generated by inflaton fluctuation.
Obviously the dynamics of relaxion in such case is more
involved, so we leave the detailed study of this case to
future work.

III. FURTHER CONSTRAINTS

As noticed recently, the relaxion mass mϕ ≃ Λ2
b=f and

the decay constant f can be constrained by a variety of
low energy observables, as well as by astrophysical and
cosmological considerations [19,20]. In this work, we
assume that the relaxion couples to the Standard Model
particles mostly through the mixing with the Higgs boson,
which arises from the barrier potential,

Vb ¼ μ2bjhj2 cosðϕ=fÞ; ð33Þ

yielding the relaxion-Higgs mixing angle

θhϕ ∼
Λ4
b

m2
h

1

vf
: ð34Þ

For a relaxion mass mϕ ≃ Λ2
b=f ≳Oð100 MeVÞ, low

energy precision measurements such as rare meson
decay [19,20] already put severe constraints. Supernova
1987A provides constraints on the lower mass range
Oð0.1 MeVÞ ≤ mϕ ≤ Oð100 MeVÞ [19], while mϕ ¼
Oð1 keVÞ is constrained by globular clusters [20] if the
mixing θhϕ is as large as Oð10−9Þ. Finally the fifth force
experiments can constrain the lighter relaxion with mϕ ≤
Oð100 meVÞ [20]. As the heavier relaxion is severely
constrained by various observational data, in the following
we focus on the relaxion mass mϕ ≲ 0.1 MeV with small
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mixing angle θhϕ ∼ 10−9, which can be consistent with the
existing astrophysical constraints.
In the above, cosmological constraints from the big bang

nucleosynthesis, cosmic microwave background, and extra-
galactic background light are not included. Although they
provide sensitive probes for the mass range Oð1 keVÞ ≤
mϕ ≤ Oð100 MeVÞ in the conventional relaxion model
[19,20], those cosmological constraints rely on the decay of
relic relaxions into the SM particles after the neutrino
decoupling. On the other hand, in our scenario with the
coupling (9), relaxions can decay dominantly into the
Uð1ÞX gauge bosons if the coupling 1=F is large enough
compared for instance to the relaxion-photon coupling
αθhϕ=πv induced by the relaxion-Higgs mixing. Indeed in

such case many of the cosmological constraints discussed
in [19,20] can be circumvented as summarized in Fig. 4.
Meanwhile, the Uð1ÞX gauge bosons produced by the

late relaxion decays contribute to the dark radiation, which
will be discussed in the following. We remind the reader
that the present constraint on the number of relativistic
degrees of freedom is Neff ¼ 3.15� 0.23 [33], providing
an upper bound on the effective number of neutrino species
as ΔNeff ≲ 0.3.
After ts, the relaxion starts to oscillate around the EW

vacuum. At first, the oscillation is overdamped due to the
friction from the gauge field as t < ts. We assume that the
duration of the over-damped oscillation is not much larger
than the Hubble time. This is automatically satisfied when

FIG. 4. Summary of the constraints on model parameters for which the relaxion can be successfully restabilized. Uncolored part
corresponds to the region satisfying all the available constraints. Figures in the left column is for the case that there is no thermal plasma
of Uð1ÞX charged particles, while the right column is for the case with dark plasma having a temperature Td ¼ 10−5g0T=gX. Blue and
purple shaded regions are excluded by the overproduction of Uð1ÞX gauge bosons and the bound on ΔNeff , respectively. Above the
brown dotted line, relaxions decay dominantly into the Uð1ÞX gauge bosons, and therefore the bound from late-time relaxion decays in
the conventional scenario can be avoided. We also depict other observational constraints in horizontal shaded bands: fifth force search
(gray), globular clusters (red), and supernovae (orange). Note that in the presence of dark plasma the viable parameter region is greatly
reduced, so for instance there is only a little viable region for the case with Td=T ¼ 10−5g0=gX and Λb ≥ 10 GeV.
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f ≲ ξF. On the other hand, if f ≫ ξF without thermal
mass, this requires an atypically small initial displacement
of the relaxion from the minimum, Δϕ ¼ OðξFÞ ≪ f.7

This fine-tune in the initial displacement may be avoided if,
for example, the gauge field Xμ have a tiny (thermal) mass
substantially larger than the Hubble rate after ts. In the
following, we however assume a tuned initial displacement
and restrict ourselves to the setups we adopted in the
previous section to make arguments straightforward.
Provided the assumption above, after settled down at ts,

the relaxion field oscillates coherently with an energy
density given by

ρϕðtÞ ∼ _ϕ2ðtsÞ
�
as
a

�
3

for t > ts: ð35Þ

As we require _ϕðtsÞ≲ Λ2
b and also Λ2

b ≲Oð4πv2Þ, the
energy density of the relaxion condensate is smaller than
the radiation energy density at t ¼ ts. Eventually, relaxions
decay into the Uð1ÞX gauge bosons, and the resulting
contribution to Neff depends on the relaxion life time, as
well as on the initial relaxion energy density. As the
temperature at the time of relaxion decay is given by Tdec ≃
1.7g−1=4�

ffiffiffiffiffiffiffiffiffiffi
ΓMpl

p
with the decay width Γ ¼ m3

ϕ=64πF
2, we

find the contribution from Uð1ÞX gauge bosons to the
relativistic degrees of freedom at Tdec is given by

ΔNeff ¼
8

7

�
11

4

�
4=3 g�sðTdecÞ

g�sðTsÞ
ρϕðtsÞ
ργðtsÞ

Ts

Tdec
: ð36Þ

In addition to those in the form of coherent oscil-
lation, relaxions can be produced thermally from the
SM plasma, providing another contribution to ΔNeff .
For θhϕ as small as 10−9, dominant production channels
are the SM particle scatterings producing ϕ and
gluon, which would yield the relaxion abundance
nϕ=T3∼3×10−9ðθhϕ=10−9Þ2 [20]. This results in ΔNeff ∼
10−6ðθhϕ=10−9Þ3=2ðF=109 GeVÞðΛb=100 GeVÞ, which is
subdominant compared to the contribution from coher-
ently oscillating relaxion condensate.
So far we have assumed that theUð1ÞX gauge bosons are

not in thermal equilibrium with the SM plasma. If they are
thermalized and remain in thermal equilibrium until the late
time, Uð1ÞX gauge bosons can be as abundant as neutrinos,
which would violate the bound on ΔNeff . On the other
hand, in the second example that we have discussed in the

previous section, we take κ ≡ gXTd=g0T as a free param-
eter. However, if the dark sector has been in thermal
equilibrium with the SM particles after the reheating, the
temperature of two sectors should be almost the same
except for the small difference coming from entropy boost.
As we will see in the following discussion, this is
disadvantageous to our scenario. Ignoring the kinetic
mixing between the Uð1ÞY and Uð1ÞX gauge bosons, the
SM sector and the dark sector interact with each other
mostly through the relaxion; e.g. two SM fermions can
annihilate into the Uð1ÞX gauge bosons mediated by the
relaxion. The interaction rate of such a process is given by

nfhσðff → XXÞi ∼ θ2hϕ

�
mf

v

�
2 T3

F2
; ð37Þ

and the thermalization of the dark sector is possible for the
temperature

T ≳ θ−2hϕ
F2

Mpl

�
v
mf

�
2

: ð38Þ

Note that for mϕ ≤ Oð0.1 MeVÞ, the relaxion-Higgs mix-
ing angle can be at most Oð10−9Þ. Also, F ≳Oð8π2ΛÞ
for theoretical consistency. This means that even for a
relatively low cutoff scale, the thermalization of dark sector
is possible only for high reheating temperature, e.g. T ≳
Oð1010 GeVÞ for Λ ¼ 10 TeV.
In Fig. 4, we show the viable parameter region for our

scenario in the absence (left) and presence (right) of dark
plasma of the SM singlet but Uð1ÞX-charged particles. For
the purpose of illustration, we adopt the dark sector temper-
ature Td ¼ κTðg0=gXÞwith κ ¼ 10−5. There are two primary
requirements: conditions for successful relaxation, i.e. (22)
or (31) discussed in the previous section, and additional
constraints for ΔNeff ≤ 0.3 discussed in this section. Other
constraints from astrophysics and terrestrial experiments
[19,20] are overlaid in the same plot. First of all, in the
presence of dark plasma providing a thermal massmD ≫ H,
our scenarioworks only on a very limited region of parameter
space as described in Fig. 4. The viable parameter regions
shrink evenmore ifwe increase κ. This essentially forbids the
Uð1ÞX gauge boson to be identified as the SM Uð1ÞY gauge
boson for the most of parameter space, as stated in the end
of previous section. On the other hand, our mechanism
works for a reasonably wide range of parameter space in the
absence of dark plasma. In particular, Λb can be as large as
Oð100 GeVÞ which is preferred in view of the inflationary
model building. Such a largeΛb is constrained further by the
fifth force experiments and stellar evolution in globular
clusters. Our scenario may be tested if the sensitivity of these
experiments is significantly improved in the future.
We finally comment on the possible perturbations of

the relaxion field around homogeneous background. As in
the conventional relaxation scenario [1], we assume that the

7We note the same subtlety resides in the conventional relaxion
scenario. The initial relaxion VEV is not necessarily very close to
the EW vacuum since the relaxion mass is smaller than the
inflation Hubble rate [19]. Therefore, at some time after inflation
the relaxion starts to oscillate with initial oscillation energy≃Λ4

b,
and can easily dominate the Universe at later time, unless the
VEV happens to be atypically close to the minimum.
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electroweak scale is selected during the long period of
inflation. Then the background value of relaxion at the
beginning of reheating is nearly homogeneous. On the
other hand, since the production of Uð1ÞX bosons depends
on the gauge field wave number, one may suspect that an
inhomogeneity of ϕ might be developed consequently.
However, it turns out that due to the negative feedback
working between the relaxion speed and the gauge field
production, the relaxion excursion in homogenous and
isotropic background is stable against perturbations.
Eventually the relaxion field enters into the terminal
regime, and thereafter the growth of perturbations is by
no means possible as _ϕ and the resulting gauge field
production continuously decay. Except for possible initial
perturbations,8 we thus conclude that sizable perturbations
in the relaxion and Uð1ÞX gauge fields can hardly be
produced in our scenario.

IV. CONCLUSION

In this paper, we examined if the cosmological relaxation
of the Higgs boson mass, which was proposed recently as
an alternative solution to the weak scale hierarchy problem,
can be compatible with high reheating temperature well
above the weak scale. As the barrier potential disappears at
high temperature, the relaxion rolls down further after the
reheating, which may ruin the successful selection of the
right Higgs boson mass. As it can provide a working
scheme over a wide range of model parameters, we focus
on the scenario that the relaxion is coupled to a dark Uð1ÞX

gauge boson as ϕX ~X=4F. In the presence of this coupling,
the background relaxion evolution causes tachyonic insta-
bility of the Uð1ÞX gauge boson, leading to an explosive
gauge field production. Then the relaxion is slowed down
soon after the gauge field production, and can be restabi-
lized by the barrier potential developed at lower temper-
ature around the electroweak scale.
To identify the working parameter region, we estimate

the relaxion excursion after the reheating and impose the
condition not to produce too much Uð1ÞX gauge bosons, as
well as other observational constraints on the model
parameters. We have examined this for two different cases.
The first is the case that there is no thermal plasma of
Uð1ÞX-charged particles, so no thermal mass of the Uð1ÞX
gauge boson. The second is the case with dark plasma
providing a thermal gauge boson massmD > H. In the first
case, the gauge field production is most efficient, and
therefore a successful restabilization of the relaxion can be
achieved over a wide range of model parameters, including
the one with Λb ¼ Oð100Þ GeV which is favored in view
of the required inflationary e-folding number in (3). In the
second case, the thermal mass mD > H suppresses the
gauge boson production, and then the relaxion can be
successfully restabilized only for a limited parameter range
with smaller Λb.
Through this study, we have also shown that Uð1ÞX can

hardly be identified as the Uð1ÞY of the SM under the
assumption that the Universe has been radiation-dominated
until when the relaxion is restabilized. If we adopt the
possibility that the Universe is dominated by the relaxion
energy density over certain period, Uð1ÞX might be iden-
tified as the Uð1ÞY for a limited range of model parameters.
Although an interesting possibility, the analysis for this case
is more involved, and we leave it to future work.
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