Strain effects on in-plane conductance of the topological insulator Bi2Te3
Jin Heui Hwang, Sangku Kwon, Joonbum Park, Jong Hun Kim, Jhinhwan Lee, Jun Sung Kim, Ho-Ki Lyeo, and Jeong Young Park

View online: http://dx.doi.org/10.1063/1.4873389
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/104/16?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Effect of carrier recombination on ultrafast carrier dynamics in thin films of the topological insulator Bi2Se3

Resolving the Dirac cone on the surface of Bi2Te3 topological insulator nanowires by field-effect measurements

Magneto-resistance up to 60 Tesla in topological insulator Bi2Te3 thin films

Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition

Atomic-layer-deposited Al2O3 on Bi2Te3 for topological insulator field-effect transistors
Strain effects on in-plane conductance of the topological insulator Bi$_2$Te$_3$

Jin Heui Hwang,1,2 Sangku Kwon,1,2 Joonbum Park,3 Jong Hun Kim,1,2 Jhinhwon Lee,4
Jun Sung Kim,5 Ho-Ki Lyeo,6 and Jeong Young Park1,2,a

1Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS),
Daejeon 305-701, South Korea
2Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST),
Daejeon 305-701, South Korea
3Department of Physics, Pohang University of Science and Technology, Pohang 790-784, South Korea
4Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu,
Daejeon 305-340, South Korea

(Received 10 February 2014; accepted 15 April 2014; published online 25 April 2014)

We investigated the correlation between electrical transport and mechanical stress in a topological insulator, Bi$_2$Te$_3$, using conductive probe atomic force microscopy in an ultrahigh vacuum environment. After directly measuring charge transport on the cleaved Bi$_2$Te$_3$ surface, we found that the current density varied with applied load. Current mapping revealed a variation of the current on different terraces. The current density increased in the low-pressure regime and then decreased in the high-pressure regime. This variation of current density was explained in light of the combined effect of changes in the in-plane conductance due to spin–orbit coupling and hexagonal warping.

Three-dimensional topological insulators (TIs), characterized by a nontrivial Z_2 topology of the bulk wave function, are insulating in the bulk with unusual metallic surface states that consist of spin-polarized Dirac fermions. Surface states of TIs are protected by the spin–orbit interaction and time-reversal symmetry. Such spin–helical states are insensitive to disorder or local perturbations because no states are available for backscattering. Therefore, low energy dissipation can be expected during electron transport processes. Characteristics of electron transport phenomena with low energy loss make a dramatic increase in energy efficiency possible, which is crucial for future energy industries.

Thus far, many attempts have been made to achieve TI-based electronic devices, including using the ambipolar field effect, flexible electrodes, and supercomputers. During fabrication of electronic devices, stress control is important because of its effect on charge transport properties. Differences in thermal expansion and in the lattice constant between contact materials cause strain that can be avoided. This strain modifies the charge transport at the interface, resulting in stability issues for these devices. While density functional theory calculations demonstrated strain effects on topological states, few transport experiments that focus on mechanical deformation have been reported. Recently, scanning probe microscopy has been widely used to explore the unique characteristics of TIs. For the most part, atomic force microscopy (AFM) studies have focused on observing surface topography. Due to the nanoscale size of the contact area between the AFM tip and sample, it is possible to investigate nanoscale charge transport without needing complicated processes for the electrodes. Thus, we demonstrate the relationship between charge transport and nanomechanical properties using conductive probe atomic force microscopy (CP-AFM) in ultrahigh vacuum (UHV).

We used single crystals of Bi$_2$Te$_3$ grown via self-flux methods. The high-purity elements—Bi(5N) and Te(6N)—were sealed in an evacuated quartz ampoule with a stoichiometry of Bi:Te = 2:3. After the mixture was heated to 850°C and annealed for two days for homogeneity, the mixture was slowly cooled to 600°C for a week. To ensure high crystallization, the furnace was kept at 600°C for one additional week before cooling to ambient temperature. The sample was introduced to the vacuum chamber and cleaved in an ultrahigh vacuum environment. A commercial RHK-Tech UHV AFM system was used for the AFM experiments. To avoid forces originating from capillary water between the tip and the sample at ambient pressure, the chamber was maintained at a base pressure of 1.0 × 10$^{-10}$ Torr. TiN-coated cantilevers (made by NT-MDT) with a force constant of 0.11 N/m were utilized to measure the conductance and friction. The measurements were performed using a hybrid combination of CP-AFM and friction force microscopy (FFM) for simultaneous detection of atomic-scale forces and conduction properties.

Conventional contact mode AFM uses cantilever deflection as the feedback signal to regulate the tip–sample distance. When electrically conductive AFM tips are connected to a current pre-amplifier, the tip–sample current is obtained as the feedback signal to regulate the tip–sample distance. When electrically conductive AFM tips are connected to a current pre-amplifier, the tip–sample current is obtained as the feedback signal to regulate the tip–sample distance.

aAuthor to whom correspondence should be addressed. Electronic mail: jeongypark@kaist.ac.kr.
The flux growth of Bi$_2$Te$_3$ could contain nonstoichiometric intercalated Bi/Te domains in the van der Waals gap, and a high density of antisite defects exists near the surface layer. Indeed, a high internal field may lead to a change in conductance. Also, the density of state of the Bi$_2$Te$_3$ can be varied by the internal field and by the level of doping in light of electronic band structures. Liu et al. demonstrated the existence of antiphase boundaries between neighboring Bi$_2$Se$_3$ grains and that these antiphase boundaries provide electrostatic fields on the order of 10^8 V/m that locally change the Dirac states. The internal field modulates the carrier density and shifts the Dirac point by up to 120 meV. We suppose that the different amounts of point defects and defect types generate an internal field between the neighboring terraces, which supports the conductance contrast in Fig. 1(c). Another possibility involves Bi terminal on the Bi$_2$Te$_3$ surface.

In contrast to friction on the terraces, the current image in Fig. 1(c)(b) shows three different terraces having distinct conductance. The terrace in the middle of Fig. 1(c) has two clearly distinguishable domains, separated by the yellow arrow in Fig. 1(a). Differences in conductance between neighboring terraces are not usually observed in normal metallic surfaces (e.g., Au (111)). The variation in current on the terrace can be associated with Bi/Te domains. The self
from force–distance curves on the Bi$_2$Te$_3$ surface. From the calculated contact area, we obtained current density (A/cm2) as a function of effective pressure (GPa) after considering the adhesion force, as shown in Fig. 2(b). We identified two regimes in the current density that depend on applied pressure: the low-pressure regime where current density increased, and the high-pressure regime where current density decreased.

We were able to observe crossover behavior of current density in most areas of the sample, but degradation of the current density occurs at various pressures along the different conductive terraces. Two neighboring terraces can be observed in Figs. 3(a) and 3(b): a high-conductive terrace (HCT) and low-conductive terrace (LCT). Current density of the HCT increased rapidly at low pressure, turning to degradation at an effective pressure of 0.2 GPa, but 0.5 GPa is needed before degradation occurs in the LCT. To analyze the unusual behavior of the current density, we separated the components of conductance into the in-plane and out-of-plane directions. Out-of-plane conductance only corresponds to bulk conductance, which is not sensitive to local deformation. Therefore, the surface contribution is significant in atomic-scale conductance because local bending mostly influences the in-plane conductance from the surface states. Each component dominantly influences the conductance in different pressure regimes.

The schematic diagram in Fig. 4(a) displays the physical origin of current density variation with threshold pressure (P_t). At low-pressure ($P<P_t$), the increase in current density is attributed to strain-induced enhancement of the local density of states (LDOS). According to previous first-principle calculations, the inverted bulk band is sensitive to uniaxial strain,$^{14-16,35}$ even destroying the topological phase at over 8% deformation due to modification of the Coulomb interaction and spin–orbit coupling.15 Strain from the AFM tip is localized in a nanosized area; uniaxial strain shifts the band gap near the surface. When a relatively small pressure is applied to the Bi$_2$Te$_3$ surface, the tip does not destroy the topological phase on the Bi$_2$Te$_3$ surface. Thus, we can attribute the increase in current density to a shift in the surface state.

In the high-pressure regime ($P>P_t$), surface conductance decreases as the strain increases upon loading the tip, which results in a decrease in current density. The robustness of surface states is well known in various circumstances via ARPES measurements and DFT calculations.$^{36-38}$ Their scattering properties, however, can be customized as the chemical potential and band alignment are modified. Near the Dirac point, the energy dispersion has a perfect cone shape and backward scattering is prohibited by the underlying spin texture. However, as the chemical potential approaches the bottom of the conduction bands, the shape of the Fermi surface for the surface state changes from a perfect circle to a rounded hexagon, which is called the hexagonal warping effect, as shown in Fig. 4(b).24,39 This leads to distortion of the spin texture, which causes enhanced oblique scattering. Local deformation becomes significant at higher loads and one can expect enhanced hexagonal warping as the chemical potential (with respect to the Dirac point) and band alignment between the topological surface state and the bulk band states are modified. This implies that the reduction in

FIG. 2. (a) Current and lateral force as a function of applied load measured on the Bi$_2$Te$_3$ surface at a 1 V sample bias. The tip–sample contact area (black line) is fitted using the DMT model. (b) The current density was obtained as a function of effective pressure from (a).

FIG. 3. 200 × 200 nm2 images of (a) topography and (b) current taken on the Bi$_2$Te$_3$ surface (applied load = 18.7 nN, sample bias = 0.34 V). HCT and LCT represent high-conductive terrace and low-conductive terrace, respectively. (c) Current density was obtained as a function of effective pressure at 0.5 V of sample bias.
current density can be explained in terms of enhanced scattering as a result of hexagonal warping effects in the high-pressure regime. Based on the Hall measurement, we confirmed that our Bi$_2$Te$_3$ topological insulator is n-type. The Hall measurement on the Bi$_2$Te$_3$ showed a carrier concentration of 7.91 × 1016 cm$^{-3}$ and a Hall coefficient of −78.9 cm3/C, measured with a probing current of 500 nA. From the low carrier concentration, we expect the Fermi level to be located on the upper side of the Dirac point so it is close enough to sense the band shift in the low-pressure regime, because it has a hexagonal shape in isotropic energy, which is consistent with our observations. In addition to hexagonal warping effects, the two-dimensional electron gas (2DEG) formed by surface band bending and confined in the metallic state also contributes to the scattering process.36,38

We were not able to separate scattering components between the 2DEG and hexagonal warping effects in the current study; thus, it remains for future study. We note that other narrow band gap semiconductors (e.g., Si) do not exhibit such pressure dependence.46

In conclusion, we studied the influence of mechanical deformation on the charge transport properties of Bi$_2$Te$_3$ surfaces using conductive probe AFM under UHV. We observed that the current density increased as the pressure increased in the low-pressure regime; however, the current density decreased by 0%–60% in the high-pressure regime. These results suggest that surface states play a major role in nanoscale charge transport and are correlated with mechanical deformation at the atomic scale. Crossover behavior of the current density implies that the local density of states and the scattering component are significantly influenced by local strain.

This work was supported by the Institute for Basic Science (IBS), CA1401-04, the SRC Centre for Topological Matter (Grant Nos. 2011-0030787 and 2001-0030785), and the Mid-Career Researcher Program (Grant No. 2012-013838) through the National Research Foundation (NRF), South Korea.

2M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).