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Abstract

The worldline formalism has previously been used for deriving compact master formulas for the one-loop 
N-photon amplitudes in both scalar and spinor QED, and in the vacuum as well as in a constant external 
field. For scalar QED, there is also an analogous master formula for the propagator dressed with N photons 
in the vacuum. Here, we extend this master formula to include a constant field. The two-photon case is 
worked out explicitly, yielding an integral representation for the Compton scattering cross section in the 
field suitable for numerical integration in the full range of electric and magnetic field strengths.
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1. Introduction

The one-loop effective action in scalar QED has the well-known “worldline” or “Feynman–
Schwinger” representation [1],

�[A] = −
∞∫

0

dT

T
e−m2T

∫
P

Dx(τ) e− ∫ T
0 dτ [ 1

4 ẋ2+ieẋμAμ(x(τ))] . (1)

Here m and T denote the mass and proper-time of the loop scalar, and 
∫
P

Dx(τ) the path integral 
over closed loops in (euclidean) spacetime with periodicity T in the proper-time.

Strassler in 1992 [2] showed how to convert this path integral into the following master for-
mula for the N -photon amplitudes:

�(k1, ε1; . . . ; kN, εN) = −(−ie)N(2π)Dδ(
∑

ki)

∞∫
0

dT

T
(4πT )−

D
2 e−m2T

N∏
i=1

T∫
0

dτi

× exp

{ N∑
i,j=1

[1

2
GBij ki · kj − iĠBij εi · kj + 1

2
G̈Bij εi · εj

]}∣∣∣
ε1ε2···εN

.

(2)

Here GB, ĠB, G̈B are the “bosonic” worldline Green’s function and its first and second deriva-
tives,

GB(τ, τ ′) ≡ ∣∣τ − τ ′∣∣ − (τ − τ ′)2

T
,

ĠB(τ, τ ′) = sign(τ − τ ′) − 2
τ − τ ′

T
,

G̈B(τ, τ ′) = 2δ(τ − τ ′) − 2

T
. (3)

Here a ‘dot’ always means a derivative with respect to the first variable, and we abbreviate 
GB(τi, τj ) ≡ GBij etc. GB(τ, τ ′) is the Green’s function for the second derivative operator d2

dτ 2

adapted to the periodicity, as well as to the “string-inspired” (‘SI’) boundary conditions

T∫
0

dτ GB(τ, τ ′) =
T∫

0

dτ ′ GB(τ, τ ′) = 0 , (4)

(up to an irrelevant constant that has been omitted). Note that G̈B(τ, τ ′) contains a delta func-
tion that brings together two photon legs; this is how the seagull vertex arises in the worldline 
formalism.

The notation 
∣∣
ε1ε2···εN

means that the exponential should be expanded, and only the terms 
linear in each of the polarization vectors be kept. The photons are ingoing and still off-shell, so 
that these vectors are just book-keeping devices at this stage.

Originally, the same master formula (2) was derived by Bern and Kosower [3,4] from string 
theory as a generating expression from which to construct the one-loop on-shell N gluon ampli-
tudes by way of a certain set of rules. It contains the information on the N -photon amplitudes 
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in a form that is not only extremely compact, but also well-organized with respect to gauge 
invariance, particularly when combined with a certain integration-by-parts procedure [3,4,2,5]. 
Moreover, it combines into one integral the various Feynman diagrams differing by the order-
ing of the N photons. This may not seem very relevant at the one-loop level, however when 
the N -photon amplitudes are used as building blocks for multiloop amplitudes it leads to highly 
nontrivial representations combining Feynman diagrams of different topologies [6,7] (see also 
[8]).

In [2] also a generalization to the spinor QED was given (see [7] for generalizations to more 
general field theories).

Shaisultanov [9] then generalized both the scalar and spinor QED master formulas to the case 
of QED in a constant external field Fμν . For the scalar case, this generalized master formula can 
be written as [10,7]

�(k1, ε1; . . . ; kN, εN) = −(−ie)N(2π)Dδ(
∑

ki)

×
∞∫

0

dT

T
(4πT )−

D
2 e−m2T det−

1
2

[
sin(Z)

Z

] N∏
i=1

T∫
0

dτi

× exp

{ N∑
i,j=1

[1

2
ki · GBij · kj − iεi · ĠBij · kj + 1

2
εi · G̈Bij · εj

]}∣∣∣
ε1ε2···εN

, (5)

where we have introduced the abbreviation Z ≡ eFT . This master formula differs from the 
vacuum one, Eq. (2), only by the additional determinant factor det− 1

2
[ sin(Z)

Z
]
, which represents 

the dependence of the free (photonless) path integral on the external field, and a change of the 
worldline Green’s function GB to a new one GB that holds information on the external field,

GB(τi, τj ) = T

2Z2

( Z
sin(Z)

e−iZĠBij + iZĠBij − 1

)
. (6)

This Green’s function obeys the same SI boundary conditions as the vacuum one, (4).
The master formula (5) and its spinor QED generalization [9,10] are usually more efficient 

for the calculation of photonic processes in a constant field than the standard method based on 
Feynman diagrams. Its applications include the vacuum polarization in a constant field [11,12,
7], photon splitting in a magnetic field [13,7], and the two-loop Euler–Heisenberg Lagrangian 
in an electric/magnetic field [10,14,15,7,16] as well as in a self-dual [17] background field. See 
[18–24] for extensions to gravity and Einstein–Maxwell theory.

Much less has been done for the analogous amplitudes involving an open line. For scalar 
QED in the vacuum, already in 1996 Daikouji et al. [25] obtained the following master formula 
representing the scalar tree-level propagator dressed with N photons (Fig. 1):

Dpp′
(k1, ε1; · · · ; kN, εN) = (−ie)N(2π)DδD

(
p + p′ +

N∑
i=1

ki

) ∞∫
0

dT e−(m2+p2)T

×
N∏

i=1

T∫
0

dτi e
∑N

i,j=1
[
�ij ki ·kj −2i•�ij εi ·kj −•�•

ij εi ·εi
]∣∣∣

ε1ε2···εN

. (7)

Here a different worldline Green’s function �(τ, τ ′) appears,

�(τ, τ ′) = ττ ′
+ |τ − τ ′| − τ + τ ′

. (8)

T 2 2



12 A. Ahmad et al. / Nuclear Physics B 919 (2017) 9–24
Fig. 1. Multi-photon Compton-scattering diagram.

Instead of the SI boundary conditions (4), it is adapted to Dirichlet boundary conditions (‘DBC’)

�(0, τ ′) = �(T , τ ′) = �(τ,0) = �(τ,T ) = 0 . (9)

Contrary to the former, these boundary conditions break the translation invariance in proper-time, 
so that one now has to distinguish between derivatives with respect to the first and the second 
argument. A convenient notation is [26] to use left and right dots to indicate derivatives with 
respect to the first and the second argument, respectively:

•�(τ1, τ2) = τ2

T
+ 1

2
sign(τ1 − τ2) − 1

2
,

�•(τ1, τ2) = τ1

T
− 1

2
sign(τ1 − τ2) − 1

2
,

•�•(τ1, τ2) = 1

T
− δ(τ1 − τ2) . (10)

The Green’s functions GB and � are related by [27]

GB(τ, τ ′) = 2�(τ, τ ′) − �(τ, τ) − �(τ ′, τ ′) , (11)

(the factor of 2 is conventional) with the inverse relation

2�(τ, τ ′) = GB(τ, τ ′) − GB(τ,0) − GB(0, τ ′) . (12)

In [25] the master formula (7) was derived by a comparison with the standard Schwinger parame-
ter integral representations of the corresponding Feynman diagrams. Recently, the same formula 
has been rederived [28] inside the worldline formalism, starting from the generalization of the 
path integral representation (1) to the propagator of a scalar particle in the Maxwell background:

Dxx′ [A] =
∞∫

0

dT e−m2T

x(T )=x∫
x(0)=x′

Dx e− ∫ T
0 dτ

[ 1
4 ẋ2+ie ẋ·A(x)

]
. (13)

The master formula (7) so far has been generalized neither to spinor QED, nor to the inclusion 
of an external field. The purpose of the present paper is to carry out the latter generalization; 
the extension to the fermionic case (but without an external field yet) will be presented in a 
companion paper [29]. See [30] for a non-abelian generalization of the dressed scalar propagator.
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The organization of the paper is as follows. As a warm-up, in section 2 we use the path integral 
representation to rederive the well-known scalar propagator in a constant field, in configuration 
as well as in momentum space. In section 3 we obtain our master formulas for the photon-
dressed propagator in a constant field in both configuration and momentum space, generalizing 
the vacuum calculation of [28]. In section 4 we work the momentum space formula out for the 
N = 2 case, and obtain a compact integral representation for the Compton scattering cross sec-
tion in a constant field. Section 5 provides a summary and outlook. In Appendix A we give our 
conventions, while in Appendix B we collect some information on the constant field worldline 
Green’s functions.

2. The propagator in a constant field

In this section, we use (13) to just rederive the well-known scalar propagator in a constant 
field, without photons yet.

2.1. Configuration space

Choosing Fock–Schwinger gauge, the gauge potential for a constant field can be written as

Aμ(y) = −1

2
Fμν(y − x′)ν, (14)

where we have fixed the initial point of the trajectory x′ as the reference point where the potential 
will vanish.

Further, we decompose the arbitrary trajectory x(τ) into a straight-line part and a fluctuation 
part q(τ) obeying Dirichlet boundary conditions, q(0) = q(T ) = 0:

x(τ) = x′ + τ

T
(x − x′) + q(τ). (15)

Using (14) and (15) in (13), and further defining

Qμ ≡
T∫

0

dτqμ(τ) , (16)

after some simple manipulations the integrand can be rewritten as

Dxx′
(F ) =

∞∫
0

dT e−m2T e− (x−x′)2
4T

∫
Dq(τ) e− ∫ T

0 dτ
q̇2

4 + ie
2

∫ T
0 dτ q̇μFμνqν+ ie

T
(x−x′)μFμνQν

=
∞∫

0

dT e−m2T e− (x−x′)2
4T

∫
Dq(τ) e

− ∫ T
0 dτ 1

4 q
(
− d2

dτ2 +2ieF d
dτ

)
q+ ie

T
(x−x′)FQ

. (17)

The path integral is already of gaussian form, and in the second line we have written it in a form 
that prepares the formal gaussian integration. Apart from the free path integral normalization, 
which is (see, e.g., [31])

∫
Dq(τ) e

− ∫ T
0 dτq

(
− 1

4
d2

dτ2

)
q = (4πT )−

D
2 , (18)
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this involves the determinant and the inverse of the operator − d2

dτ 2 + 2ieF d
dτ

. For the case of the 
SI boundary conditions (4), the relevant formulas have been given already in (5), (6) above. The 
ratio of the field-dependent and free path integral normalizations are

Det′−
1
2

P

(− 1
4

d2

dτ 2 + 1
2 ieF d

dτ

)
Det′−

1
2

P

(− 1
4

d2

dτ 2

) = Det′−
1
2

P

(
1 − 2ieF

( d

dτ

)−1
)

= det−
1
2

[ sin(Z)

Z
]
, (19)

(the ‘prime’ refers to the elimination of the zero mode which is contained in the path integral 
for string-inspired boundary conditions). This can be shown by a direct eigenvalue computation 
[31], and it is easy to see that the spectrum does not change when passing from string-inspired to 
Dirichlet boundary conditions, so that (19) holds unchanged for the open-line case.

The worldline Green’s function does change, but still relates to the one for string-inspired 
boundary conditions in the same way as in the vacuum case, (12):

�
	

(τ, τ ′) ≡ 〈τ |
( d2

dτ 2
− 2ieF

d

dτ

)−1|τ ′〉DBC

= 1

2

(
GB(τ, τ ′) − GB(τ,0) − GB(0, τ ′) + GB(0,0)

)
. (20)

Note that, contrary to the vacuum Green’s function (8), it is a non-trivial matrix in the Lorentz 
space–time indices. Using this Green’s function in the usual completing-the-square procedure, 
we get

Dxx′
(F ) =

∞∫
0

dT e−m2T e− (x−x′)2
4T (4πT )−

D
2 det−

1
2

[
sin(eFT )

eFT

]

× exp

{ T∫
0

dτ

T∫
0

dτ ′ ie
T

(x − x′)F�
	

(τ, τ ′) ie
T

F (x − x′)
}

=
∞∫

0

dT e−m2T e− (x−x′)2
4T (4πT )−

D
2 det

1
2

[ Z
sinZ

]

× exp

{
− 1

T 4
(x − x′)Z◦�

	

◦Z(x − x′)
}

. (21)

Here we have now extended the above ‘dot’ notation to include integration as well as differenti-
ation; a left (right) ‘open circle’ on �

	
(τ, τ ′) denotes an integral 

∫ T

0 dτ (
∫ T

0 dτ ′). In Appendix B

we show that

◦�
	

◦ ≡
T∫

0

dτ

T∫
0

dτ ′�
	

(τ, τ ′) = T 3

4Z
(

cotZ − 1

Z
)

, (22)

which brings us to the well-known proper-time representation of the constant-field propagator 
(see, e.g., [32]),

Dxx′
(F ) =

∞∫
0

dT e−m2T (4πT )−
D
2 det

1
2

[ Z
sinZ

]
exp

{
− 1

4T
(x − x′)Z cotZ(x − x′)

}
.

(23)
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2.2. Momentum space

We Fourier transform (23),

Dpp′
(F ) =

∫
dDx

∫
dDx′ eip·x+ip′·x′

Dxx′
(F ) , (24)

and changing the integration variables to

x+ = 1

2
(x + x′), x− = x − x′ , (25)

we get

Dpp′
(F ) =

∞∫
0

dT e−m2T (4πT )−
D
2 det

1
2

[ Z
sinZ

]

×
∫

dDx−
∫

dDx+ e
i
2 (p−p′)·x−+i(p+p′)x+exp

{
− 1

4T
x−Z cotZx−

}
. (26)

As
∫

dDx− eip·x−− 1
4T

x−Z cotZx− = (4πT )
D
2

det
1
2 [Z cotZ]

e−Tp(ZcotZ)−1p , (27)

the final result becomes

Dpp′
(F ) = (2π)Dδ(p + p′)D(p,F ) ,

D(p,F ) =
∞∫

0

dT e−m2T e−Tp( tanZ
Z )p

det
1
2 [cosZ]

. (28)

3. The dressed propagator in a constant field

We now wish to dress the propagator with N photons in addition to the constant field. As 
before, we start in configuration space.

3.1. Configuration space

For this purpose, the potential in (13) has to be chosen as

A = Aext + Aphot , (29)

where Aext is the same as in (14), and Aphot represents a sum of plane waves:

A
μ
phot(x) =

N∑
i=1

ε
μ
i eiki ·x . (30)

Each photon then effectively gets represented by a vertex operator

V A[k, ε] =
T∫

dτ ε · ẋ(τ ) eik·x(τ) , (31)
0
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integrated along the scalar line. This leads to the following path integral representation of the 
constant-field propagator dressed with N photons:

Dxx′
(F | k1, ε1; · · · ; kN, εN) = (−ie)N

∞∫
0

dT e−m2T

∫
P

Dx e− ∫ T
0 dτ

[ 1
4 ẋ2+ie ẋ·Aext(x)

]

× V [k1, ε1]V [k2, ε2] · · ·V [kN, εN ] . (32)

For the evaluation of the path integral, it will be convenient to rewrite the photon vertex operator 
(31) as

V A[k, ε] =
T∫

0

dτ eik·x(τ)+ε·ẋ(τ )
∣∣∣
lin(ε)

. (33)

Applying the path decomposition (15) we get the following generalization of (17),

Dxx′
(F | k1, ε1; · · · ; kN, εN)

= (−ie)N

∞∫
0

dT e−m2T − x2−
4T

∫
Dq e

− ∫ T
0 dτ 1

4 q
(
− d2

dτ2 +2ieF d
dτ

)
q+ ie

T
x−FQ

×
T∫

0

N∏
i=1

dτi e
∑N

i=1
(
εi · x−

T
+εi ·q̇(τi )+iki ·x− τi

T
+iki ·x′+iki ·q(τi )

)∣∣∣
ε1ε2···εN

. (34)

The path integral is already in a form suitable for gaussian integration. “Completing the square” 
using the Green’s function (20), and using (22), we get the following x-space master formula:

Dxx′
(F | k1, ε1; · · · ; kN, εN)

= (−ie)N

∞∫
0

dT e−m2T (4πT )−
D
2 det

1
2

[ Z
sinZ

]
e− 1

4T
x−Z cotZx−

×
T∫

0

dτ1 · · ·
T∫

0

dτN e
∑N

i=1
(
εi · x−

T
+iki · x−τi

T
+iki ·x′)

× exp

[ N∑
i,j=1

(
ki �

	
ij kj − 2iεi

•�
	

ij kj − εi
•�
	

•
ij εj

)

+ 2e

T
x−

N∑
i=1

(
F ◦�

	
i ki − iF ◦�

	

•
i εi

)]∣∣∣
ε1ε2···εN

. (35)

For the special case of a purely magnetic field, this x-space master formula was obtained already 
in 1994 by McKeon and Sherry [33].

3.2. Momentum space

The transition to momentum space is quite analogous to the photon-less case. We Fourier 
transform according to (24), and change the variables to (25). The x+ integral produces the global 
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delta function for energy–momentum conservation, and the x− integral is gaussian. Performing 
it we get our momentum space master formula:

Dpp′
(F | k1, ε1; · · · ; kN, εN)

= (−ie)N (2π)Dδ
(
p + p′ +

N∑
i=1

ki

) ∞∫
0

dT e−m2T 1

det
1
2 [cosZ]

×
T∫

0

dτ1 · · ·
T∫

0

dτN e
∑N

i,j=1
(
ki �

	
ij kj −2iεi

•�
	

ij kj −εi
•�
	

•
ij εj

)
e−T b( tanZ

Z )b
∣∣∣
ε1ε2···εN

. (36)

Here we have defined

b ≡ p + 1

T

N∑
i=1

[(
τi − 2ieF ◦�

	
i

)
ki − i

(
1 − 2ieF ◦�

	

•
i

)
εi

]
. (37)

The master formula (36) describes the same set of Feynman diagrams depicted in Fig. 1, only 
that now all the scalar propagators are the “full” ones in the external field (usually indicated by 
a double line). When applying it to the calculation of physical processes, one has to take into 
account that it describes the untruncated dressed propagator, i.e. the final propagators on each 
end of the scalar line in Fig. 1 are included. To obtain the matrix element T , we have to cancel 
these final propagators using (28):

T (F | k1, ε1; · · · ; kN, εN) = Dpp′
(F | k1, ε1; · · · ; kN, εN)

D(p,F )D(p′,F )
. (38)

Moreover, it will be convenient to Wick rotate from euclidean to Minkowski space; the rules 
for the Wick rotation are given in Appendix A together with our conventions. In Appendix B
we collect the formulas necessary to write the integrand in explicit form. We use (20) to write 
the Green’s function �

	
(τ, τ ′) in terms of GB(τ, τ ′), which is translation invariant and obeys (4)

which will be very useful here. We then explain how to write GB(τ, τ ′) explicitly for a generic 
constant field.

Finally, let us remark that eventual poles in the global proper-time integral due to the determi-

nant factor in (36) are spurious, because when cosZ = 0 the factor e−T b( tanZ
Z )b will vanish too 

(differently from the corresponding one-loop amplitudes, where such poles lead to an imaginary 
part related to pair creation).

4. Compton scattering in a constant field

We will now work out the N = 2 case, i.e. Compton scattering in a constant field. Expanding 
out the exponentials in (36) and projecting to the terms linear in both polarization vectors, we 
find (omitting now the global factor for energy–momentum conservation):

Dpp′
(F | k1, ε1; k2, ε2) = e2

∞∫
0

dT
e−m2T

det
1
2 [cosZ]

×
T∫

dτ1

T∫
dτ2 e

−T b0(
tanZ
Z )b0+∑2

i,j=1 ki �
	

ij kj
ε1M12ε2 , (39)
0 0
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with

b0 ≡ p + 1

T

2∑
i=1

(
τi − 2ieF ◦�

	
i

)
ki , (40)

and

M12 ≡ 2•�
	

•
12 − 2

T

(
1 + 2ie◦�

	

•
1F

) tanZ
Z

(
1 − 2ieF ◦�

	

•
2

)

+ 4
[
(1 + 2ie◦�

	

•
1F)

tanZ
Z b0 −

2∑
i=1

•�
	

1i ki

]

×
[
b0

tanZ
Z

(
1 − 2ieF ◦�

	

•
2

)
−

2∑
i=1

ki�
	

•
i2

]
. (41)

Squaring, and performing the sum over the photon polarizations via∑
pol

ε
∗μ
i εν

i −→ gμν , (42)

we get the following for the Compton cross section:

∑
pol

T ∗T = e4

|D(p,F )|2 |D(p′,F )|2

×
∞∫

0

dT ′ e−m2T ′

det
1
2
[
cosZ ′]

T ′∫
0

dτ ′
1

T ′∫
0

dτ ′
2 e

−T ′b∗
0( tanZ ′

Z ′ )b∗
0+∑2

i,j=1 ki �
	

′
ij kj

×
∞∫

0

dT
e−m2T

det
1
2 [cosZ]

T∫
0

dτ1

T∫
0

dτ2 e
−T b0(

tanZ
Z )b0+∑2

i,j=1 ki �
	

ij kj tr(M ′†
12M12) .

(43)

After writing the integrand explicitly with the help of the formulas of Appendix B, this expression 
is suitable for numerical integration.

5. Summary and outlook

Using the worldline path integral formalism, we have derived a Bern–Kosower type master 
formula for the scalar propagator in QED, in a constant field and dressed by an arbitrary number 
of photons. The x-space version of this formula generalizes the one obtained by McKeon and 
Sherry for the purely magnetic case [33]; the p-space version generalizes the vacuum master 
formula of Daikouji et al. [25] on one hand, the closed-loop master formula of Shaisultanov [9]
on the other. Our master formula is valid off-shell, and combines the various orderings of the N
photons along the scalar line. It can thus be used as a convenient starting point for the construction 
of higher-loop scalar QED processes in a constant field. On-shell, it yields parameter integral 
representations for linear and nonlinear Compton scattering in the field, as well as the various 
processes related to it by crossing.
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To make this paper self-contained, we have also provided all the machinery necessary for 
writing the integrands in explicit form. We have worked out the integrand for the linear Compton 
scattering case explicitly, arriving at a compact representation suitable for numerical integration. 
The results of such a numerical computation will be presented in a forthcoming publication. 
Compton scattering in magnetic fields is a process of potential relevance for astrophysics, but, to 
the best of our knowledge, so far has been studied only in the strong-field limit [35].
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Appendix A. Conventions

At the path integral level, we work in the Euclidean space with a positive definite metric 
(gμν) = diag(+ + . . .+). The euclidean field strength tensor is defined by F ij = εijkBk , i, j =
1, 2, 3, F 4i = −iEi . Minkowski space amplitudes are obtained by analytically continuing

gμν → ημν ,

k4 → −ik0 ,

T → is ,

F 4i → F 0i = Ei , (A.1)

where (ημν) = diag(− + ++). These Minkowski space conventions agree with [34] up to the 
sign of the charge e.

Momenta appearing in vertex operators are ingoing.

Appendix B. Worldline Green’s functions

Here we collect the information necessary to work out explicitly the integrands generated by 
the master formulas (35) and (36) for any N .

B.1. Expressing the DBC Green’s function through the SI one

Rather than writing out the DBC Green’s function �
	

(τ, τ ′) and its derivatives directly in terms 

of trigonometric functions of the field strength tensor, we find it convenient to first rewrite them 
in terms of the SI Green’s function GB(τ, τ ′) via (20),

�
	

(τ, τ ′) = 1

2

(
GB(τ, τ ′) − GB(τ,0) − GB(0, τ ′) + GB(0,0)

)
. (B.1)

The advantages of GB(τ, τ ′) are that it is translation invariant, so that we do not have to distin-
guish between right and left derivatives, and that it fulfills the same nonlocal boundary conditions 
as the vacuum Green’s function (4),
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T∫
0

dτ GB(τ, τ ′) =
T∫

0

dτ ĠB(τ, τ ′) =
T∫

0

dτ G̈B(τ, τ ′) = 0 . (B.2)

The latter property will be very useful for the ‘circled’ Green’s functions. Moreover, the 
Lorentz matrix structure of GB(τ, τ ′) has already been worked out for the various types of con-
stant fields [12,7].

Using (B.1), the various derivatives and integrals of �
	

(τ, τ ′) appearing in the master formulas 

become

•�
	

(τ, τ ′) = 1

2

(
ĠB(τ, τ ′) − ĠB(τ,0)

)
,

•�
	

•(τ, τ ′) = −1

2
G̈B(τ, τ ′) ,

◦�
	

(τ ′) = T

2

(
−GB(0, τ ′) + GB(0,0)

)
,

◦�
	

•(τ ′) = T

2
ĠB(0, τ ′) ,

◦�
	

◦ = T 2

2
GB(0,0) . (B.3)

B.2. General properties of the Green’s function GB

Here we cite a few general properties of the Green’s function GB and its derivatives; for 
derivations and more details, see [12,7,23]. We can write these functions as power series in the 
matrix Z ≡ eFT as follows [10]:

GB(τ, τ ′) = T

2Z2

( Z
sin(Z)

e−iZĠB(τ,τ ′) + iZĠB(τ, τ ′) − 1

)
,

ĠB(τ, τ ′) = i

Z

( Z
sin(Z)

e−iZĠB(τ,τ ′) − 1

)
,

G̈B(τ, τ ′) = 2δ(τ − τ ′) − 2

T

Z
sin(Z)

e−iZĠB(τ,τ ′) . (B.4)

By absorbing the dependence on τ, τ ′ in terms of the derivative of the vacuum Green’s function, 
ĠB(τ, τ ′), one avoids having to make an explicit case distinction between τ1 > τ2 and τ1 < τ2
that would become necessary otherwise [9]. Let us note also the coincidence limits of GB, ĠB :

GB(τ, τ ) = T

2Z2

(
Z cot(Z) − 1

)
,

ĠB(τ, τ ) = icot(Z) − i

Z . (B.5)

Note that they are independent of τ . As Lorentz matrices, GB and its derivatives have the follow-
ing symmetry properties:

GB(τ, τ ′) = GT
B (τ ′, τ ), ĠB(τ, τ ′) = −ĠT

B (τ ′, τ ), G̈B(τ, τ ′) = G̈T
B (τ ′, τ ) . (B.6)

For weak background fields, it is often justified to approximate the Green’s function by the first 
few terms of its expansion in Fμν . To order F 2, one finds
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GB(τ, τ ′) = GB(τ, τ ′) − T

6
− i

3
ĠB(τ, τ ′)GB(τ, τ ′)T eF +

(T

3
G2

B(τ, τ ′) − T 3

90

)
(eF )2

+ O(F 3) ,

ĠB(τ, τ ′) = ĠB(τ, τ ′) + 2i
(
GB(τ, τ ′) − T

6

)
eF + 2

3
ĠB(τ, τ ′)GB(τ, τ ′)T (eF )2

+ O(F 3) ,

G̈B(τ, τ ′) = G̈B(τ, τ ′) + 2iĠB(τ, τ ′)eF − 4
(
GB(τ, τ ′) − T

6

)
(eF )2 + O(F 3) . (B.7)

These expansions are easily obtained from (B.4) using the identity Ġ2
B(τ, τ ′) = 1 − 4

T
GB(τ, τ ′). 

The coefficients can be written in closed form to all orders in F , either in terms of Bernoulli 
polynomials of τ − τ ′ [10], or in terms of Faulhaber polynomials of ĠB(τ, τ ′) [23].

B.3. Matrix decomposition of the Green’s function GB

Finally, a matrix decomposition of GB will be necessary. This can be achieved in a Lorentz 
invariant way [12], but from a practical point of view it is simpler to work in a Lorentz frame 
well-adapted to the external field. Here, we will be satisfied with treating (i) the case of a generic 
field and (ii) the purely magnetic field case; see [12] for the more special ‘crossed field’ and 
‘self-dual’ cases. In all cases it will be useful to decompose GB as

GB = SB +AB , (B.8)

where SB is the even part of GB as a function of F , and AB the odd one. For SB , the following 
trigonometric rewriting is often useful:

SB(τ, τ ′) − SB(τ, τ ) = T
sin

(∣∣u − u′∣∣Z)
sin[(1 − ∣∣u − u′∣∣)Z]

Z sinZ , (B.9)

where we have rescaled τ = T u, τ ′ = T u′.

B.3.1. The generic case
For a generic constant field, both Maxwell invariants B2 − E2 and E · B are nonzero. By 

Lorentz invariance there then exists a Lorentz frame where the electric and magnetic field vectors 
both point along the z-axis, and by parity invariance we can assume that they both point along 
the positive z-axis. In euclidean conventions, we then have

F =

⎛
⎜⎜⎝

0 B 0 0
−B 0 0 0

0 0 0 iE

0 0 −iE 0

⎞
⎟⎟⎠ , (B.10)

which suggests to introduce the following matrix base:

g⊥ ≡

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , g‖ ≡

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,
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r⊥ ≡

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , r‖ ≡

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ .

Using this Lorentz frame and base, and defining

z⊥ ≡ eBT , z‖ ≡ ieET , (B.11)

the matrix functions SB and AB can be decomposed as [12,7]

Sμν
B12 = −T

2

∑
α=⊥,‖

Aα
B12

zα

gμν
α ,

Aμν
B12 = iT

2

∑
α=⊥,‖

Sα
B12 − ĠB12

zα

rμν
α ,

Ṡμν
B12 =

∑
α=⊥,‖

Sα
B12 gμν

α ,

Ȧμν
B12 = −i

∑
α=⊥,‖

Aα
B12 rμν

α ,

S̈μν
B12 = G̈B12g

μν − 2

T

∑
α=⊥,‖

zαAα
B12 gμν

α ,

Äμν
B12 = 2i

T

∑
α=⊥,‖

zαSα
B12 rμν

α , (B.12)

with the following coefficient functions:

Sα
B12 = sinh(zαĠB12)

sinh(zα)
,

Aα
B12 = cosh(zαĠB12)

sinh(zα)
− 1

zα

(B.13)

(α =⊥, ‖). In the worldline formalism, these two scalar, dimensionless functions SB and AB are 
the basic building blocks of the integrands of one-loop amplitudes in a constant field in scalar 
QED, as well as in scalar Einstein–Maxwell theory [21,23].

B.3.2. The magnetic case
For easy reference, let us write down here also the explicit formulas for the case of a pure 

magnetic field, with B pointing along the z-axis:

ḠB12 = GB12 g‖ − T

2

(
cosh(zĠB12) − cosh(z)

)
z sinh(z)

g⊥

+ T

2z

(
sinh(zĠB12)

sinh(z)
− ĠB12

)
ir⊥ ,

ĠB12 = ĠB12 g‖ + sinh(zĠB12)
g⊥ −

(
cosh(zĠB12) − 1

)
ir⊥ ,
sinh(z) sinh(z) z
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G̈B12 = G̈B12 g‖ + 2

(
δ12 − z cosh(zĠB12)

T sinh(z)

)
g⊥ + 2

z sinh(zĠB12)

T sinh(z)
ir⊥ . (B.14)

Here the “bar” on GB indicates that its irrelevant coincidence limit has been subtracted. The DBC 
Green’s function in the magnetic case can be written relatively compactly as [33]

�
	

(τ, τ ′) = �(τ, τ ′)g‖ + 2eT

z

[
θ(τ − τ ′) sin

z(τ − τ ′)
2eT

− sin zτ
2eT

sin z(T −τ ′)
2eT

sin z
2e

]

×
[

cos
z(τ − τ ′)

2eT
g⊥ + sin

z(τ − τ ′)
2eT

r⊥
]
, (B.15)

where now z = eBT .
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