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Endpoint contribution to the instantaneous ionization rate for tunneling ionization
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We examine the instantaneous ionization amplitudes and instantaneous ionization rates for the process of
tunneling ionization. We show that the endpoint contribution usually neglected in the asymptotic evaluation of
the amplitudes, may be significant. For weak fields the instantaneous ionization rate is largely defined by this
contribution. For higher field strengths of the order of 0.1 a.u., the account of this contribution allows one to
reproduce numerically computed instantaneous ionization rates with higher accuracy.
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I. INTRODUCTION

The pioneering work by Keldysh [1], and its subsequent
developments [2,3], known collectively as the Keldysh-Faisal-
Reiss (KFR) theory, laid out a framework on which our current
understanding of the ionization phenomena is based. Depend-
ing on the value of the Keldysh parameter y = w+/2|gy|/E,
where w, E, and |go| are the frequency, field strength, and
ionization potential of the target atom (here and below we
use the atomic units), ionization processes can be broadly
divided in two classes: multiphoton and tunneling processes.
We shall be interested below in the process of the tunneling
ionization. Part of the appeal of the tunneling ionization theory
to a theorist is probably due to the fact that under typical
experimental conditions the motion of an ionized electron
in the laser field is essentially classical. This allows one to
use classical and semiclassical methods, and often permits
obtaining the solution in a closed analytical form. This feature
is common both for the KFR theory, its generalizations [4-7],
and alternative developments, such as the recently proposed
adiabatic approach [8]. On the other hand, this essentially
classical character of the motion of the ionized electron allows
a physically transparent interpretation of experimental data.
Thus, the well-known techniques of attosecond streaking and
angular attosecond streaking [9,10] are based on the analysis
of the classical electron trajectories.

An important ingredient in such an analysis is the so-called
instantaneous ionization rate. Although some doubts have
been expressed as to the very possibility of a meaningful
definition of the subcycle ionization rate [11], this notion
proved to be extremely fruitful. It is a key ingredient, for
example, in the derivation of the well-known and widely used
ADK [7] formula. The instantaneous ionization rate is often
used in simulations of the experimental results on tunneling
ionization [12,13], which rely on the fact of the essentially
classical character of the electron motion after the ionization
event. In high harmonic generation, for example, the quantum
path interference of harmonic radiation generated through
different classical electron trajectories is clearly observed in
the experiments, which are well reproduced in the simulation
[14]. The instantaneous ionization rate provides the quantum
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ingredient to this picture; different electron trajectories come
with the weights given by the instantaneous ionization rate
[12].

The simplest approximation to the instantaneous ionization
rate is the so-called quasistatic formula [5], which is just an
ionization rate in the constant electric field. More general
expressions with the correct pre-exponential factor, valid for
all values of the Keldysh parameter y, have been obtained
in [15,16]. Expressions for the instantaneous ionization rate
obtained in these works allow one to gain insight into the
development of the ionization process on a subcycle scale.
Derivation of these expressions rely on a technique often
employed in the theories of tunneling ionization—the saddle
point method [17]. It is this technique, which allows one
to obtain in many cases closed analytical results in theories
of tunneling ionization. It is often implicitly assumed that
the saddle points contributions are the only contributions we
have to consider to obtain estimates for the integrals defining
the ionization amplitudes. While this is true if we consider
ionization on the interval of the whole pulse duration, the
situation may be different when we consider amplitudes as
functions of time for the moments of time inside the laser pulse.
Estimating the integrals defining the ionization amplitudes,
we have to consider in this case the contribution of the
endpoint—the current moment of time ¢. This contribution
is often neglected, as it was done, e.g., in [15], and indeed it
is, as we shall see, insignificant in many cases. Nevertheless,
as we shall show, there is a range of the laser field parameters
(weak laser fields), when this contribution is, in fact, dominant.
Even for stronger fields (intensities of the order of several units
of 10'* W/cm?) an account of the endpoint contribution may
still prove significant.

II. THEORY

We consider a system described by the Hamiltonian
operator:

I:I(t) = I:Ialom + ﬁim(t)v (1)

where I:Iamm is the Hamiltonian of the field-free atom, and
operator I:Iim(t) describes the interaction of the atom with an
electromagnetic EM field. We use the length gauge for this
operator and assume that the EM field is polarized along the z
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direction:
Hw(t) = E(t)z, 2)

where E(t) is the electric field of the laser pulse. We assume
that the laser pulse is present on the interval of time (0,77). We
are interested in the time dependence of the total ionization
rate on the interval ¢ € (0,77). The total ionization rate may be
defined as

dP(t)

wit) = dt

, 3)

where
P(t) = / lay(H)]* dp 4)

is the total instantaneous ionization probability, and a,() the
instantaneous ionization amplitude. Let us recapitulate briefly
the procedure used to calculate the ionization amplitude in the
Keldysh theory [also known as the strong field approximation
(SFA) theory]. The well-known SFA expression for the
ionization amplitude in the length gauge can be written as
[1,5,18]

Clp(t) =—l/ E(‘L’)(p + A(t) — A(t)|0(t’.[)z¢0>e—iagt dr,
0

&)

where ¢y is the initial atomic state with energy &g, A(¢) vector
potential of the laser pulse, and U (¢, 7) is the propagator, which
in the SFA takes the form,

(pIUSFA(t,D)|p') = exp {—’5 / (p + A(x) — AQD))’ dx}

x8(p = p). (6)

Upon substituting this expression into Eq. (5), one obtains an
expression for the amplitude,

t
ap(t) = —i / g()e ™ dr, (7
0
with

8(t) = E(0)(p + A7) — A(D)|z]0), ®)

and
u(r) = % / (p+ Ax) — A(t))2 dx + got. 9)

Further development of the SFA theory is based [1,5]
on the observation, that if I/w > 1 (where I = —E the
ionization potential) the function u(t) defined in Eq. (9) is
large. The integral in Eq. (7) contains then a rapidly oscillating
exponential function, which invites application of the saddle
point method [5]. This strategy was used in [15] to evaluate
integral (5) for the instantaneous ionization rate.

We should note, however, that for 7 inside the interval (0, T})
(where T is the total pulse duration), the contributions due to
the saddle points are not the only contributions we have to
consider to find the asymptotic behavior of the integral (5).
The contributions of the endpoints of the integration interval
have to be considered, too. We can use the stationary phase
method [17] to elucidate this point.
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Let us first consider a simple integral which models
expression (7) for the amplitude:

t 3
1(;):] cos x M5 H0, (10)

IR

where b > 0, A is a large parameter (we use A = 10 below)
and we chose the lower limit of integration so that as in Eq. (7)
the integrand vanishes there. The integrand has stationary
points at x, = +i~/b. Taking into account that the derivative
of the expression in the exponential function is nonzero on
the interval (0,7), and integrating (10) by parts, we obtain in
a usual way [17] the first term of the asymptotic expansion of
the integral (10) in powers of 1!

1)~ —S8L_incs o (11)

T i+ b)

In Fig. 1 we present numerically computed quantity W(¢) =
[1(t)|> and w(t) = ‘% as functions of time and compare them
with the results obtained using the first term of the asymptotic
expansion (11). We see, that for the values of the parameter
b =~ 1 we obtain very good agreement between the results of
the numerical calculation and results of the calculation using
the first term of the asymptotic expansion (11). Agreement is
getting worse when b decreases and becomes very poor for
b =~ 0.05. The reason for this is, ultimately, a well-known
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FIG. 1. (Color online) Contribution of the endpoint to the value
of W(t) = |I(#)]* and w(t) = %, where /() is an integral (10)
for different values of the parameter b. (Red solid line) Numerical
calculation; (green dashed line) calculation using the first term of the
asymptotic expansion (11). Parameter T = 2.
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feature [19] of the asymptotic expansions; their accuracy
is limited. Equation (11) represents the first term of the
asymptotic expansion of the amplitude in powers of a small
quantity A~!. The account of the higher order terms [obtainable
by repeated integration by parts in Eq. (10)] can give terms
of higher order in A~'. We can thus obtain the asymptotic
series in powers of A~ for the integral. There is, however,
another contribution to the integral, due to the saddle points
at x, = =i «/b. This contribution, as can be easily seen, is (we
write only the exponential factor) proportional to exp (— %b% ).
Because of the limited accuracy inherent to the asymptotic
series [19], asymptotic expansion in inverse powers of A cannot
reproduce terms decaying exponentially when A — oo in true
asymptotic of the integral in Eq. (10). If, for a given A, these
terms are small (i.e., parameter b is such that Ab> > 1), the
endpoint contribution is much larger than the saddle point
contribution, and the first term of the asymptotic expansion
in powers of A~! provides a good approximation to the
integral (10). If Ab> & 1, the saddle point contribution may
be significant and Eq. (11) provides a poor approximation to
the integral (10). We see, thus, that depending on the value of
the parameter b in (10), we may have both the case when the
saddle point gives the dominating contribution, and then saddle
point analysis would provide an accurate asymptotic estimate,
and the case, when the endpoint contribution dominates, and
then we have to use the stationary phase method to get an
accurate asymptotic estimate.

Let us consider now the more realistic case of the integral in
Eq. (7) defining the ionization amplitude. Taking into account
that u'(t) # 0 on the interval (0,7}), and integrating (7) by
parts, we obtain the first term of the asymptotic expansion
of the integral in Eq. (7) in inverse powers of the quantity
A = |u'(¢)| which is assumed to be large:

t
a;p(t) = —i/ g(v)e @ gz
0

—iu(t)

e _ _2E(l)(P|Z|¢0>e—iaot
w'(t) p? —2¢ .

~ g(1) 12)

The corresponding contribution from the endpoint v =0
vanishes since the electric field vanishes there, and hence
2(0) = 0. We use notation a; (¢) in Eq. (12) to emphasize the
fact that aj; (¢) is an endpoint contribution to the amplitude.

Equation (12), in fact, does a very good job in approxi-
mating the SFA amplitude for the laser field parameters such
that Keldysh parameter y & 1. As an example, we compare in
Fig. 2 results of the numerical evaluation of the SFA amplitude
ay(t) for zero electron momentum and results given by the
asymptotic formula (12) for pulses with the base frequency
w = 0.057 a.u. and field strength of 0.05 a.u. For better
visibility we present in Fig. 2 the amplitude by = age’®’,
which does not oscillate so fast in time. We consider a model
atom with g = —0.5 a.u. and assume that the matrix element
(plzldo) = 1.

We observe very good agreement between the numerical
calculation and the asymptotic formula for the real part of the
amplitude by. The imaginary part of the amplitude, which for
the field parameters we consider is much smaller than the real
part, cannot be represented by the asymptotic formula (12).
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FIG. 2. (Color online) (a) and (c) Electric field (red solid line),
and vector potential (green dashed line) of the laser pulse used in
Eq. (12). (b) and (d) (Red solid line) Numerically computed real part
of the amplitude by(); (green dashed line) amplitude by(r) computed
according to Eq. (12); (Blue dotted line) numerically computed
imaginary part of by(¢). (Total pulse duration) Two optical cycles (a)
and (b), six optical cycles (c) and (d); base frequency w = 0.057 a.u.,
peak electric field strength Ey = 0.05 a.u.

The reason for this is the same as in the example we considered
above; this is a manifestation of the limited accuracy of the
asymptotic expansions. Equation (12) represents the first term
of the asymptotic expansion of the amplitude in powers of
the small quantity A = 1/|u’(¢)|. Repeating the integration by
the parts procedure, we can obtain higher order terms in A ™!,
and thus obtain an asymptotic series in powers of A~! for
the real part of the amplitude by. The imaginary part of the
amplitude cannot be obtained by this procedure; since it shows
parametrically (as a function of A) different behavior, it is
an exponentially small quantity for A — oo. To obtain the
imaginary part, we should use the saddle point method, as was
done in [15]. For A — oo the imaginary part thus obtained is
smaller than the real part at all points of the interval of the
laser pulse duration except the points where the laser field is
zero. Indeed, Eq. (12) shows that the endpoint contribution
vanishes at this point. We arrive, thus, at the following picture.
For the large values of the parameter A introduced above,
asymptotic behavior of the instantaneous ionization amplitude
at the moment of time 7 can be can be represented as a sum of
two terms:

ap(t) ~ all () +aP(t) (- 00), (13)

where a;/(¢) is the contribution due to the saddle points, and
ay (1) is the endpoint contribution. Depending on the choice of
the laser field parameters the relative contributions of the two
terms in Eq. (13) may vary. For small values of the Keldysh
parameter y SFA predicts [5] that the saddle point lying in the
upper half of the complex ¢ plane (these are the points that
matter for the asymptotic evolution of the amplitude) should
satisfy Im #;, =~ ﬁ’ where Ej is the peak field strength. This
leads to the well-known law of the exponential decay for the
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amplitudes a;, (r) in Eq. (13) when Ey — 0. We can consider
this exponential decay as a signature of the stationary point
in Eq. (7). Amplitudes a; (¢), on the other hand, are rational
functions of Ej. For sufficiently small E, the contribution of
a, (t) in Eq. (13) will dominate for all intervals of the laser
pulse duration except the point t = Ty, where a; () vanish
according to Eq. (12). Inverse electric field strength, in fact,
plays the role of the parameter b in the example (10) we
considered above. For small Eq (large b) the saddle point is a
complex number with a large imaginary part, its contribution
is exponentially small, and endpoint analysis based on the
stationary phase method gives an accurate estimate for the
amplitude (7) [integral (10)].

Using Eq. (13) we can write for the total instantaneous
ionization probability,

P(t) ~ Pi(t) + Px(1) (A — 00), (14)

where

Pi(n)= /[Iaw(p)l2 +a"”*(p)a®” (p) +a”*(p)a* (p)l dp,
15)

and
Pat) = / a?(p) dp = CEX(1). (16)

Expression for C can easily be obtained from Eq. (12), but
we will not need its explicit form below. What was said above
about the relative roles of the contributions due to the saddle
points and endpoints applies to the instantaneous ionization
probabilities P;(¢) and P,(¢f) and their time derivatives,
which give the saddle-point and endpoint contributions to the
instantaneous ionization rates. We can expect that for weak
fields P,(z) should represent total instantaneous ionization
probability quite accurately at all points of the interval of
the laser pulse duration (0,7)) except the point t = 7). In the
next section we verify these statements, comparing asymptotic
results for the endpoint contribution with the results obtained
by solving the time-dependent Schrodinger equation (TDSE).
Before presenting analysis of these results, we should make
the following remark. We used the SFA expression to evaluate
the ionization amplitude. The exact instantaneous ionization
amplitude is given by an expression similar to Eq. (5) with
the SFA propagator replaced by the exact propagator, and the
plane wave state | p) replaced by the exact scattering state of the
system. Repeating the steps of the derivation Eq. (9), Eq. (8),
which led to Eq. (12) for the amplitude and Eq. (16) for the
ionization probability, we would obtain essentially the same
result. The difference with the SFA result would be that factor
C in Eq. (16) would generally depend on time. Indeed, time
independence of C in the derivation based on the SFA approach
was a result of the fact that the endpoint contribution (12) was
a function of p only and did not contain the vector potential
A(t). If we do not use SFA, in particular if the plane wave in
Eq. (5) is replaced with the true continuum scattering state of
the system, the endpoint contribution to the amplitude becomes
a function of the two arguments p and A(¢). Therefore, in the
general case the factor C in Eq. (16) may depend on time.
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III. RESULTS

We performed a set of numerical calculations of the
instantaneous ionization probabilities and ionization rates.
The time-dependent Schrodinger equation (TDSE) was solved
numerically for the hydrogen atom for pulses of various
shapes, duration, and field strength. We use linearly polarized
pulses and the geometry with the polarization vector pointing
in the z direction. The method we employed to solve TDSE has
been described in [20,21]. We shall give, therefore, only a brief
description of the procedure. To treat spatial variables TDSE is
discretized on the grid with the stepsize §r = 0.05 a.u. in a box
of the size Ry.x = 1000 a.u. The wave function is represented
as

W(r,) =) firnYi(®), (17)
l

where summation in Eq. (17) is restricted to [ = 0 — L.
The particular value of the parameter L, is determined by
the convergence properties of Eq. (17). The value we used
in the calculations reported below was Ly.x = 60. We have
performed several checks to ensure that these value of L«
and Rp,x were sufficient to solve accurately TDSE for the EM
fields we consider below. To propagate the wave function (17)
in time we use the matrix iteration method (MIM) developed
in [22].

To compute the function P(¢) defined in Eq. (4), we project
the solution of the TDSE W(¢) at various instances of time in
the course of evolution on the set of the continuous spectrum
wave functions of the hydrogen atom |klm), obtaining a set
of the coefficients ay;, (1) = (kIm|¥(t)) (for the geometry we
use and the 1s state of hydrogen, which we use as the initial
state, only the coefficients with m = 0 have nonzero values, of
course). Using the set of the coefficients ay;o(f) we computed
P(t)in Eq. (4) as

Lmax

P()=Y /) |awo(t)*dk. (18)
C

=0

Instantaneous ionization rate w(¢) was found by differenti-
ating P(¢). In Fig. 3 we show results for the instantaneous total
ionization probability for the ionization process driven by the
laser pulse with the electric field:

e
E(t) = Epsin (ﬁ) cos wt, (19)
for t € (0,T7), and E(t) =0 outside this interval. Base
frequency of the pulse was w = 0.057 a.u. (wavelength of
800 nm), total pulse duration 7} = 2T, where T =27 /w is
the optical cycle corresponding to the base frequency w. We
performed calculations for various values of the pulse peak
strengths E).

We see, that in agreement with the discussion we presented
above and Eq. (16), instantaneous ionization probability for
weak fields in Figs. 3(a) and 3(b), when the saddle-point
contribution is exponentially small, mimics almost exactly the
squared instantaneous electric field of the pulse. For these
fields the endpoint contribution P,(¢) in Eq. (14) is a domi-
nating contribution, which actually defines the instantaneous
ionization probability for times inside the interval of the pulse
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FIG. 3. (Color online) (Red solid line) TDSE results for the
instantaneous ionization probability as a function of time for the laser
pulse given by Eq. (19) with total pulse duration 7; = 27, where
T =27 /w, an optical cycle, and peak field strengths of 0.01 a.u.,
0.02 a.u,, 0.05 a.u., 0.1 a.u. (a)—(d). (Green dashed line) Squared
electric field of the pulse E%(z).

duration. Of course, the endpoint contribution vanishes at the
end of the laser pulse, so that total ionization probability at the
end of the laser pulse is always determined by the saddle-point
contribution. For stronger electric fields, exceeding 0.05 a.u.
in Figs. 3(c) and 3(d) the contribution of the saddle point
is a dominating one. Nevertheless, even for such fields the
account of the endpoint contribution may prove important. Let
us consider the instantaneous ionization rate w(z).

Taking the derivative with respect to time of both sides of
Eq. (14) and using Eq. (16) we find the following formula for
w(t):

dpP(t) dC(t) _, dE(t)
7 T E“(t)+2C(t)E(1) T

Relative contributions of the three terms in Eq. (20) depend,
of course, on the field strength we employ. We have seen that
for the fields of the order of 0.02 a.u. the first term on the
right-hand side can be safely neglected. One can argue that
the term quadratic in the field strength may also be small,
and can be neglected, too. That this is indeed the case can
be seen from Fig. 4. In the figure we show ionization rates
given by the TDSE calculation. For the weak field of 0.02 a.u.
w(t) is perfectly fitted by the formula following from Eq. (20),
assuming we keep only the third term on the right-hand side
of this equation and treat C(¢) as a constant fitting parameter:

dE(1)
dr ’

where E(t) is the laser pulse electric field given by Eq. (19).
An expression often used to estimate the instantaneous

ionization rate is the so-called quasistatic formula, which for
the hydrogen atom we consider reads

w(t) = (20)

w(t) ~ CE(t) (21

e~ T, (22)

o) = 5G]
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FIG. 4. (Color online) Instantaneous ionization rate as a function
of time for the laser pulse (19) with total pulse duration 7 = 2 optical
cycles and the peak field strength £y = 0.02 a.u. (a), 7} = 2 o.c. and
Ey=0.1a.u.(b),T; =3o0.c.and Ey = 0.1 a.u. (c). (d) Instantaneous
ionization rate as a function of time for the laser pulse (25) with total
pulse duration 77 = 2 o.c. and Ey = 0.1 a.u. (Red solid line) TDSE
results; (green dashed line) quasistatic formula; (blue dotted line)
results of the fits based on Eqgs. (21) and (24).

where E(t) is the instantaneous electric field. This formula
results from the evaluation of the ionization amplitude using
the saddle-point method for the case of the constant electric
field, and can be interpreted, therefore, as a saddle-point
contribution. Other formulas have been proposed [7,23] to
describe behavior of the instantaneous ionization rate. They
give different pre-exponential factors in Eq. (22), but essential
for the purpose of the present paper is the exponential factor
in Eq. (22), which can be regarded as a signature of the saddle
point causing the exponential behavior of the amplitude.

Figure 4(a) shows that Eq. (16) and the expression for the
ionization rate derived from it indeed work well in the weak
field case. In this regime the behavior of the instantaneous
ionization rate as a function of time can in no way be
represented by quasistatic (or analogous) formulas. Indeed,
one can see from Fig. 4 that the instantaneous ionization rate
can assume negative values, which are not reproduced by the
quasistatic expression. The negative instantaneous ionization
rate describes a process of the electron’s return to the atom.
More precisely, the total instantaneous ionization probability
and rate were defined above in terms of the norm of the
projection of the wave function on the positive energy part
of the spectrum of the atomic Hamiltonian. The negative
ionization rate means, therefore, a decrease of this norm and
a corresponding increase of the norm of the projection of
the wave function on the discrete energy eigenstates. As we
saw, the account of this process can prove important for weak
electric fields.

Consider the case of the stronger field with the peak
strength Eyp = 0.1 a.u. (corresponding to the intensity of
3.5 x 10" W/cm?).
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By differentiating Eq. (15) we can see that the time
derivative % in Eq. (20) is generally a sum of two
contributions: the contribution due to the saddle point and
the term due to the interference between saddle-point and
endpoint amplitudes. One can argue that if we want to describe
the ionization rate curve w(¢) for the moments of time ¢ at
some distance from the maxima of the electric field E(¢), the
interference term can be neglected. Indeed, the saddle-point
contribution to the amplitude decays exponentially when the
electric field decreases, while the contribution due to the
endpoint is a rational function of the electric field strength.
The endpoint contribution to the instantaneous ionization rate
will, therefore, eventually dominate. Approximating the rate
ar == (’) in Eq. (20) by the quasistatic formula, we arrive at the
followmg equation for the instantaneous ionization rate:

() (t)

w(t) = Awy (1) + —— —ZEt)+ 2C(t)E(t) , (23)

where we scale the quasistatic rate to achieve better agreement.
Assuming further that for strong enough fields the third term

in Eq. (23) can be neglected, and considering B = dc(’) as a
constant factor, we obtain the fitting formula:
w(t) ~ Awy(t) + BE(1). (24)

Results of the fits based on Eq. (24) are shown in Fig. 4 for the
pulse given in Eq. (19) for the peak strength of Ey = 0.1 and
the total duration of two and three optical cycles. One can see
that adding the endpoint contribution B E*(¢) improves the fits
considerably. To make sure that the good agreement between
numerically computed w(#) and the ionization rate obtained
using Eq. (24) does not depend on the particular shape of the
laser pulse, we performed a calculation using the laser pulse
defined in terms not of the electric field as in Eq. (19), but in
terms of the vector potential:

E t
A(t) = =2 sin? (n_) sin wt, (25)
w Tl

for t € (0,T1), and A(t) = O outside this interval. As before,
the peak field strength is £y = 0.1 a.u., and base frequency
w = 0.057 a.u. Results of the fit based on Eq. (24) for this
pulse are shown in Fig. 4.

IV. CONCLUSION

We considered the contribution of the endpoint to the
integral (7) defining the instantaneous ionization amplitude.
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This contribution should be added to the contribution of the
saddle point, which is usually used to evaluate the ionization
amplitude. We saw that depending on the field strength, relative
contributions of the saddle-point and endpoint contributions
may vary. The saddle-point contribution becomes exponen-
tially small in the weak field limit. The endpoint contribution,
on the other hand, is a rational function of the electric field
strength. Therefore, for the weak fields (field strength of the
order of 0.02 a.u. in the examples we considered above),
the endpoint contribution plays a dominant role. For stronger
fields, with the field strength of the order of 0.1 a.u., we may
still need the saddle-point contribution to describe the behavior
of the instantaneous ionization amplitude in the region not in
the intermediate vicinity of the maximum of the instantaneous
electric field.

Equation (14) represents total instantaneous ionization
probability as a sum of the contributions due to the saddle
point and the endpoint. The endpoint contribution vanishes at
the moment of time when the electric field is zero. In particular,
the endpoint contribution vanishes at the end of the laser pulse,
so that total ionization probability at the end of the laser
pulse is always determined by the saddle-point contribution.
In particular, if we took the expression for the ionization rate
(20), which contains the endpoint contribution, and integrated
it over the pulse duration (or any integer number of cycles of
the laser pulse), the integral would have the same value we
would have obtained had only the saddle-point contribution
been taken into account.

It may seem, therefore, that the endpoint contribution we
discussed in the paper is, to a degree, unphysical. We believe it
is not quite so. The instantaneous ionization rate is often used
in modeling the ionization phenomena in complex systems,
where ab initio TDSE calculations become prohibitively
complex. An example is the TIPIS model [12,13], where the
ionization process is modeled by launching classical trajec-
tories at different moments of time, contributions of different
trajectories being weighted using an appropriate expression
for the instantaneous ionization rate. As we have seen, the
account of the endpoint contribution may considerably modify
the instantaneous ionization rate.
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