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Simulating molecular dynamics directly on quantum chemically obtained potential energy surfaces
is generally time consuming. The cost becomes overwhelming especially when excited state dy-
namics is aimed with multiple electronic states. The interpolated potential has been suggested as
a remedy for the cost issue in various simulation settings ranging from fast gas phase reactions
of small molecules to relatively slow condensed phase dynamics with complex surrounding. Here,
we present a scheme for interpolating multiple electronic surfaces of a relatively large molecule,
with an intention of applying it to studying nonadiabatic behaviors. The scheme starts with adia-
batic potential information and its diabatic transformation, both of which can be readily obtained,
in principle, with quantum chemical calculations. The adiabatic energies and their derivatives on
each interpolation center are combined with the derivative coupling vectors to generate the corre-
sponding diabatic Hamiltonian and its derivatives, and they are subsequently adopted in producing
a globally defined diabatic Hamiltonian function. As a demonstration, we employ the scheme to
build an interpolated Hamiltonian of a relatively large chromophore, para-hydroxybenzylidene im-
idazolinone, in reference to its all-atom analytical surface model. We show that the interpolation is
indeed reliable enough to reproduce important features of the reference surface model, such as its
adiabatic energies and derivative couplings. In addition, nonadiabatic surface hopping simulations
with interpolation yield population transfer dynamics that is well in accord with the result generated
with the reference analytic surface. With these, we conclude by suggesting that the interpolation of
diabatic Hamiltonians will be applicable for studying nonadiabatic behaviors of sizeable molecules.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4872155]

I. INTRODUCTION

Potential energy surfaces (PESs) are essential for per-
forming various molecular simulations. Because elucidating
nonadiabatic processes that govern the dynamics of excited
state species require reliable descriptions of multiple poten-
tial surfaces and their couplings, constructing accurate PESs
is even more important in studying properties of excited state
species produced by light absorption.1–8 In this situation, fit-
ting analytical models to reference quantum chemical calcu-
lations becomes enormously difficult compared to the cases
with single electronic states. Thus, PES construction is of-
ten completely avoided by directly adopting quantum chemi-
cal calculations. This approach, however, normally demands
very high computational power. In many cases, if not all,
the formidable computational cost forces us to utilize small
numbers of trajectories with limited statistical meaning, or to
employ low levels of quantum chemical theories in simula-
tions. Although numerous studies have accumulated essen-
tial knowledge regarding many nonadiabatic processes within
these limitations,8–20 developing a method for explicitly con-
structing accurate PESs will still be highly valuable.

a)E-mail: ymrhee@postech.ac.kr

In fact, this computational expense problem is an is-
sue in obtaining not only multiple state PESs but also a
single state surface to some degree. A “model-less model”
using an interpolated PES has been developed to re-
lieve the problem.13, 21–26 This approach was first pioneered
by Collins and co-workers,21 and was initially used for
studying gas phase reaction dynamics of small molecular
systems.22, 23, 27, 28 Recently, investigations on condensed
phase adiabatic excited state dynamics with interpolated PESs
have also been reported.13, 24 These condensed phase studies
involved relatively long durations of simulations with com-
paratively large ensemble sizes. Considering that they in-
volved dynamics simulations on single surfaces, a natural ex-
tension will be to account for the nonadiabatic phenomena by
engaging multiple surfaces along the trajectories. By incorpo-
rating this feature, the applicability of interpolation technique
will be greatly expanded especially toward studying biologi-
cal systems.13

For this purpose, nonadiabatic coupling matrix elements
near degeneracy should be computed.1–3, 7, 29 Also, for per-
forming the interpolation, a smooth function without singu-
larity is needed. This requirement makes the diabatic po-
tential energy matrix a good candidate for the interpolation,
over the conventional adiabatic potential energies and deriva-
tive coupling vectors. Namely, because the diabatic potential

0021-9606/2014/140(16)/164112/13/$30.00 © 2014 AIP Publishing LLC140, 164112-1
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energy matrix is smooth near conical intersections, its inter-
polation will be mathematically more tractable. Although a
perfect diabatization is only possible for small systems,30 var-
ious quasi-diabatization methods can successfully generate
reliable states without singularity in state-to-state derivative
couplings.30–36

In fact, there have already been developments in meth-
ods for interpolating diabatic Hamiltonians.17, 28, 29 In these
works, the adiabatic potential energies are diabatized with
the requirement that interpolated diabatic potential energy
matrix should be smooth. The interpolation of diabatic Hamil-
tonian is conducted with the adiabatic-to-diabatic transforma-
tion (ADT) matrix obtained by this internally imposed dia-
batization scheme. This method was reported to yield very
accurate derivative couplings and electronic state occupation
probabilities.17, 29 However, how it will perform with large
systems has not been investigated yet, especially with the in-
ternal diabatization. Indeed, imposing the continuity condi-
tion might require an excessively large number of data points
toward interpolation for large systems. On the other hand,
many diabatization processes have been proposed for eluci-
dating excited states of large molecules. The diabatic states
obtained by these external schemes have given useful in-
formation on the chemical and physical properties of many
molecules.30–36 For investigating the nonadiabatic dynamics
of large systems, therefore, developing a scheme for interpo-
lating diabatic Hamiltonians through such external diabatiza-
tion procedures will be useful.

In this article, we present a method for interpolating di-
abatic Hamiltonian with external diabatization, namely, un-
der the situation where adiabatic-to-diabatic transformation
matrix is already given. We will evaluate the reliability of
the diabatic Hamiltonian interpolation by applying it to pre-
viously defined analytic surface35 of the green fluorescent
protein (GFP) chromophore, para-hydroxybenzylidene im-
idazolinone (pHBI). By adopting an analytic model, the
convergence of the potential energy matrix can be readily ver-
ified. We will show that the present interpolation scheme is ca-
pable of describing both the energy landscape and the deriva-
tive couplings in large systems, with more than 20 atoms. We
will also show nonadiabatic molecular dynamics (MD) sim-
ulation results of the gas phase GFP chromophore to demon-
strate the reliability of the interpolated diabatic Hamiltonian
for studying dynamics. Finally, we will discuss the directions
to which we should improve this scheme in future studies
when we attempt to investigate the photodynamics of com-
plex systems.

II. THEORY

We are trying to interpolate the diabatic potential energy
matrix D. In the Shepard interpolation of a potential surface,
the energy at an arbitrary molecular geometry X is normally
formulated as

V (X) =
∑

n

w(n) V (X; X(n)). (1)

In this expression, V (X; X(n)) is the Taylor expansion of the
potential energy from the nth geometrical data point X(n), and
w(n) is the interpolation weighting function. In a similar man-
ner, the interpolation of a matrix D can be formulated as

D(X) =
∑

n

w(n) D(X; X(n)). (2)

Then, the subsequent tasks for interpolating D will be prepar-
ing the Taylor expansions D(X;X(n)) at an arbitrary point X
from a set of data points {X(n)}, and determining the weights
{w(n)} for the data points. We will form the Taylor series by
directly employing derivatives of D. For w(n), we will adopt
weighting functions based on Cartesian Euclidean distances.
These aspects will be explained in detail in this section, to-
gether with other practical issues that need to be handled for
interpolation. Hereafter, when it is not ambiguous, X(n) will
be denoted as n for the sake of simplicity.

A. Taylor expansion

The Hamiltonian on the diabatic state basis, namely, the
diabatic potential energy matrix D, is a unitary transforma-
tion of an adiabatic and diagonal potential matrix V. With the
adiabatic-to-diabatic transformation matrix R, it can be ex-
pressed as

D = RTVR. (3)

To perform the Taylor expansions, we need to obtain the
derivatives of R and V. From the natural property of the
diabatization,29, 31, 33 we can write the gradient of R as

∇R = −FR, (4)

where the nonadiabatic coupling matrix F is composed of vec-
tor elements. With this relationship, the first and the second
derivatives of D(n) are obtained by differentiating the ele-
ments of diabatic Hamiltonian as

∂D(n)

∂Xa

= RT(n)

[
∂V(n)

∂Xa

+ Fa(n)V(n) − V(n)Fa(n)

]
R(n),

(5)

∂D(n)

∂Xb∂Xa

= ∂D(n)

∂Xa∂Xb

= RT(n)

[
1

2

∂2V(n)

∂Xb∂Xa

+ 1

2

∂2V(n)

∂Xa∂Xb

+ Fa(n)
∂V(n)

∂Xb

+ Fb(n)
∂V(n)

∂Xa

−∂V(n)

∂Xb

Fa − ∂V(n)

∂Xa

Fb − Fa(n)V(n)Fb(n) − Fb(n)V(n)Fa(n)

+1

2
V(n)

(
Fa(n)Fb(n) + Fb(n)Fa(n) − ∂Fa(n)

∂Xb

− ∂Fb(n)

∂Xa

)

+ 1

2

(
Fb(n)Fa(n) + Fa(n)Fb(n) + ∂Fa(n)

∂Xb

+ ∂Fb(n)

∂Xa

)
V(n)

]
R(n). (6)
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Here, for the second derivative, we have employed its sym-
metrized form. For further details on derivations of these ex-
pansions, one should refer to the previous work by Collins
and co-workers.29

When the use of any arbitrary coordinate system Q is de-
sired, the Cartesian derivatives are transformed as

∂D(Q(n))

∂Qi

=
∑

a

Jia

∂D(X(n))

∂Xa

, (7a)

∂2D(Q(n))

∂Qj∂Qi

=
∑
ba

JjbJia

∂2D(X(n))

∂Xb∂Xa

+
∑

a

∂Jja

∂Qj

∂D(X(n))

∂Xa

(7b)
with the Jacobian factor Jia = ∂Xa/∂Qi.24, 27 Using these
derivatives in Q coordinates, the diabatic expansion at an ar-
bitrary configuration Q from a data point Q(n) is

D(Q; Q(n)) = D(Q(n)) +
∑

i

�
Q
i

∂D(Q(n))

∂Qi

+
∑
ij

�
Q
i �

Q
j

∂2D(Q(n))

∂Qj∂Qi

(8)

with �Q = Q − Q(n). Any coordinate system can be used for
Taylor expansions, including curvilinear internal coordinates
Z and the Cartesian coordinates X, as long as its Jacobian
factors are available.

B. Weighting function

As explained earlier, the interpolated D at an arbitrary
geometry X involves weighting function w(n). As in the Tay-
lor expansion case, there are two possible coordinate systems
for this function: internal coordinates21, 27, 37 and the Cartesian
coordinates.23, 38 When we combine these two possibilities
with another two possibilities in the coordinate system choice
toward the Taylor expansion, we have in total four possibili-
ties. In this work, we will utilize a Cartesian weighting func-
tion in combination with the internal coordinate based Tay-
lor expansions. Although the advantages of employing this
scheme have already been discussed quite some time ago,23

for completeness, we will elaborate them again with compar-
isons to other alternative approaches for computing the dis-
tances.

When the internal coordinates are to be employed for the
weight w(n), a combination of various geometrical parame-
ters, such as bond lengths, bending angles, and/or dihedral
angles need to be considered. Of the three types, dihedral an-
gles are often required as bond lengths and bond angles do not
possess any chiral sense. However, a dihedral can at the same
time suffer from singularity in measuring the distance. For ex-
ample, when we imagine a system composed by four atoms as
A-B-C-D, we can define a dihedral angle φABCD. Now, sup-
pose that the A-B-C angle is close to 180◦. In this situation,
when one rolls the atom A around the B-C axis from φABCD

= 0 to 360◦, the distance this atom travels will actually be
nearly zero. However, the angle φABCD still travels from 0◦

and 360◦. This implies a singularity in determining the dis-
tances. Even though the singularity itself may be avoided

by coupling the dihedral with other metrics (e.g., sin( � ABC)
· φABCD), such a variation tends to add another level of
complication to the distance measurements. Furthermore, in
the condensed phase molecular dynamics simulations, where
high energy fluctuations occur quite often, near-collinearities
can take place rather frequently.

This aspect has led us to adopt Cartesians for weighting.
Because the Cartesian distance between two conformations
can be affected by the molecular rotations in space, a way
to implement uniqueness to the weighting function should
be devised. For this purpose, the sum-over-the-orbit (SOO)
procedure38 or a simple alignment strategy23 can be adopted.
The SOO approach takes all the possible three-dimensional
rotations into account and computes all continuously varying
distances toward the weighted average of the Taylor expan-
sion. This process is conventionally matched with Cartesian
Taylor expansion for the molecular potential and is mathe-
matically well-defined to generate a smooth potential surface
in a rigorous manner. However, averaging over the rotated
poses of a molecule may sometimes yield unphysical molec-
ular forces. Let us take an example of an ethylene molecule
depicted in Fig. 1(a). When its molecular force is described by
SOO with an interpolation data point, whose conformation is
exactly the same except a switch between two hydrogen atoms
as shown in the figure, one can easily show that the Carte-
sian distance is invariant to the angle φ when the C-C axes of
the two conformations overlap with each other. When there
is pure C-H stretching (or contraction) force within the inter-
polation data point, the SOO procedure over the angle φ will
render this force into an average over a cone, as pictorially
represented in Fig. 1(b). Thus, the stretching force becomes
contaminated by fictitious bending force after the weighted
average.

Such an unphysical distortion can be avoided by mea-
suring the distance with an alignment of the two conforma-
tions, paired with Taylor expansions in internal coordinates.23

FIG. 1. Example of a case where the sum-over-the-orbit averaged force can
become unphysical. (a) For symmetric ethylene, the Cartesian Euclidean dis-
tance from the left geometry to the reference on the right is invariant to the
φ-rotation around the C-C axis when the two conformations differ by an H-
atom switch. (b) When there is a pure C-H stretching force at the reference
geometry (interpolation data point), the sum-over-the-orbit averaging in φ-
angle will generate an average over a force cone (red), effectively producing
an in-plane bending force vector (blue arrow).
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The alignment actually finds the rotation of the interpolation
data point that minimizes its distance to the geometry of in-
terest. During molecular dynamics simulations, because the
molecule changes its orientation and shape only by a small
amount at each time step, newly aligning each interpolation
data point can be achieved very fast when an iterative scheme
is adopted in the Eulerian angle space.23, 39 Verification of the
global minimum nature of the alignment can also be read-
ily attained in conjunction with the iteration. One potential
concern against using the alignment scheme may be the am-
biguity in the alignment. Namely, for certain molecules, the
alignment may lead to a non-unique solution. The ethylene
molecule shown in Fig. 1(a) will be a good example, as any
angle φ with overlapping C-C axes yield degenerate align-
ment minima. However, this does not pose any difficulty for
our scheme because it is paired with Taylor energy/force ex-
pansions in internal coordinates. Practically, the iteration will
converge to an undefined angle φ. However, the conforma-
tional distance is constant over all possible φ in this case,
and the internal gradient exerts exactly the same molecular
force no matter where the alignment procedure converges to.
The degeneracy with ethylene in our example is related to the
intrinsic molecular symmetry. Even in cases, where the dis-
tance degeneracy happens for an accidental reason, our align-
ment procedure will converge to one point in the degenerate
space. Because the distance and the weight will be identi-
cal within that degenerate space and because the molecular
force is dictated by internal coordinates, the force and the po-
tential become uniquely well defined. In addition, the Carte-
sian weighting function can be readily obtained even for large
molecules, and does not neglect or over-represent any degrees
of freedom inside any given molecule.23

We also note that our scheme of adopting Cartesian
weighting and internal Taylor expansion may not be a uni-
versally optimal solution. Namely, depending on the proper-
ties of the molecular systems, alternative choices may work
better. For example, when the molecule does not experi-
ence collinearities, adopting redundant internal coordinates
for both weighting and Taylor expansion can perform very
well. This can even be supplemented with a separate weight-
ing scheme for bonds, angles, and dihedrals toward improved
convergence in terms of the dataset size.17, 37

In any case, the working expression for our interpolated
diabatic Hamiltonian D(X) at an arbitrary geometry X can be
written as

D(X) =
∑

n

w(n)D(X; n) =
∑

n

w(X; n)D(Z; Z(n)). (9)

The weighting function is determined by the distance between
X and the Cartesian data point geometry X(n). The Taylor
expanded diabatic Hamiltonian D(Z;n) is defined with the
curvilinear internal coordinates Z. This internal coordinate is
straightforwardly transformed from the Cartesian coordinate,
i.e., Z = Z(X). The explicit definition of the Cartesian weight-
ing function that we have adopted is

w(n) = w(X; X(n)) =
(
1/d2

n

)p∑
m

(
1/d2

m

)p (10)

with p = 6, where

d2
n =

∑
i

|(X)i − (SX(n) + T)i |2. (11)

Here, (X)i is the Cartesian sub-vector from X belonging to the
ith atom of the system, while S and T are the rotational matrix
and the translational vector for minimizing the squared Eu-
clidean distance, d2

n . The fast iterative approach for obtaining
S and T mentioned earlier follows the formulation reported by
Rhee.23 See Appendix for the form of the weighting function
derivative.

By evaluating the interpolated diabatic Hamiltonian
along with its gradient, the physical quantities utilized in con-
ventional molecular simulations, such as adiabatic energies
and nonadiabatic coupling matrix elements, can be computed
in a straightforward manner. The first derivative of D(Z) is
obtained as

∂D(Z(X))

∂Xa

=
∑

n

w(X; n)
∂D(Z; Z(n))

∂Xa

+ D(Z; Z(n))
∑

n

∂w(X; n)

∂Xa

. (12)

The adiabatic energy and its derivative can be obtained by di-
agonalizing D(Z) and then unitary transforming ∂D(Z)/∂Xa

with the eigenvectors of D(Z).29 The set of eigenvectors is
naturally obtained as the row vectors of the adiabatic-to-
diabatic transformation matrix R at any given geometry X.
Also, after some algebra, one can show that the derivative
coupling Fintp between states k and j is also related to the off-
diagonal element of the unitary transform of ∂D(Z)/∂Xa:

(
Fintp

j,k

)
a

= 〈j | (∂He/∂Xa) |k〉
Ej − Ek

= −eT
j (∂D/∂Xa)ek

Ej − Ek

. (13)

Here, He denotes the electronic Hamiltonian. In addition, ei

is the ith eigenvector of D(Z), whose elements constitute the
transformation rule from the diabatic states into the ith adia-
batic state.3, 29, 33, 40

C. Diabatic sign consistency toward interpolation

Let us suppose a general situation where we obtain the
diabatic Hamiltonian directly from quantum chemical calcu-
lations. In this case, the adiabatic energies (V), the ADT trans-
form matrix (R), and the derivative coupling (F) are obtained
as the raw data, and then subsequently adopted to generate
the diabatic information. Because R and F are constructed
with vector quantities, whose directions are affected by so-
lutions of eigenproblems, care must be taken to keep their
directions consistent for successful interpolation. In fact,
quantum chemical calculations rely on processes with unde-
termined signs in various places: for example, in optimizing
one-electron orbitals and in obtaining configuration interac-
tion (CI) coefficients.

In the end, this issue affects our formulation through the
sign conventions of the adiabatic and the diabatic bases. From
Eq. (3), one can easily see that the ADT matrix transforms
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these two bases as

�i =
∑

j

Rij�j , (14)

where {� i} and {�i} represent adiabatic and diabatic bases,
respectively. Thus, flipping the sign of the kth adiabatic state
will change the ADT matrix as

R′k = dkR (15)

with a diagonal matrix dk whose (k, k)th element is −1 and
whose all other diagonal elements are +1. However, this
change has no effect on interpolation as the components of
the derivative coupling are affected in a canceling manner:

F′k
a = dkFadk. (16)

Namely, because dk and V commute with each other and be-
cause (dk)2 = 1, Eqs. (3), (5), and (6) are invariant to the sign
flips of any adiabatic state functions.

When the sign of a diabatic state is changed, however, the
behavior is completely different. Flipping the sign of the kth
diabatic state will change the ADT matrix as

R′k = Rdk. (17)

Quite naturally, this leads to the change in the diabatic Hamil-
tonian as D′k = dkDdk. Thus, consistently keeping the signs
of diabatic states on the interpolation data points will be cru-
cial in constructing the database toward interpolation. In this
work, because we have the reference analytic model, impos-
ing sign consistency in the dataset can be achieved rather triv-
ially. In future applications with actual quantum chemical cal-
culations, a scheme for building global consistency should be
implemented.

III. NUMERICAL TESTS

Ultimately, we aim to apply the present scheme in com-
bination with quantum chemically obtained dataset for in-
terpolation. Before we attempt such applications, however,
we need to check how this interpolation approach performs
in comparison with the reference original surface. Because
adopting quantum chemical calculations for this verification
purpose will be extremely time-consuming, we will instead
employ an analytical model system. Here, a model potential
of the GFP chromophore, pHBI,35 is used as a reference. Its
diabatic potential energy matrix, which adopts functions of
four important dihedral angles in the molecule (Fig. 2), de-
scribes three diabatic states.35 These states were originally de-
termined with the localizations of the electronic charges after
quantum chemical calculations.35 These functions were then
supplemented with the AMBER99SB force field41 parameters
to generate an all-atom model of the pHBI anion with the dia-
batic states. Of course, this diabatic model was converted into
adiabatic potential and derivative coupling first before being
adopted as inputs for interpolation to mimic the situation with
quantum chemical calculations. The definitions of internal co-
ordinates that we adopted for Taylor expansions can be found
in the supplementary material.42

We have chosen the GFP chromophore for a number
of reasons. First, it is a relatively large system compared

C3
C4

C5

C12

H13

C14

N15

C18

N H

O

O
-

θi

θi’
θp 

θp’  

C18-C14-C12-H13

C4-C12-C14-N15

C14-C12-C4-C5

H13-C12-C4-C3

φi  = (θi+θi’)/2
φp = (θp+θp’)/2

FIG. 2. Molecular structure of the green fluorescent protein chromophore
pHBI anion, along with the definitions of torsional angles for defining the
analytic diabatic Hamiltonian.

to previous test cases.17, 28, 29 Therefore, it can give a sense
of how applicable the diabatic interpolation can be toward
large systems. In addition, because the GFP chromophore
and its homologues are frequently found in various fluores-
cent proteins,13, 43–47 the present work may produce valuable
preliminary information toward their studies. Of course, us-
ing an analytical model surface will expedite any bench-
mark tests as it avoids any time consuming quantum chem-
ical calculations as noted above. If we can demonstrate that
the multi-dimensional surface is successfully reproduced with
the present interpolation scheme, we will surely be encour-
aged to extend the procedure toward interpolations with ab
initio calculations. In this section, we will first test vari-
ous criteria for sampling the points toward the interpola-
tion dataset construction. Then, we will adopt a combina-
tion of the tested criteria for the actual dataset generation,
and analyze the performance of the produced interpolated
potential in comparison with the reference analytic surface.
We will also present results of nonadiabatic simulations as
a simple demonstration of the applicability of the present
scheme.

A. Sampling of the interpolation data points:
Preliminary consideration

To conduct the diabatic potential energy matrix interpo-
lation, we need to construct a dataset composed of diabatic
Hamiltonian D and its first and second derivatives. This starts
from a small primitive dataset, which will grow in size by
adding more points gathered from sampling simulations. For
the primitive set, we have generated 71 initial geometries by
varying two torsional angles φp and φi from the S0 opti-
mized geometry (Franck-Condon point) with φp = φi = 0◦

(Fig. 2). This was based on previous observations that the
chromophore normally twists through only one angle in the
excited state.14, 35, 48 Even if this primitive dataset is inap-
propriate, it can be systematically improved through a con-
struction algorithm.13 With our algorithm, each time a con-
formation that was farther from all existing data points than
a cutoff distance was reached by gas phase simulation on
the S1 adiabatic surface,13 it was added to the dataset. The
conformation selected with this scheme will be relevant with
the dynamics considered. Compared to the PES growing
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algorithm37 suggested by Collins et al.,21, 28, 29, 38 where many
candidate conformations are collected first in a similar fash-
ion but then only a small fraction are added based on the
interpolation energy correction criteria, our approach will
likely exhibit a slower convergence in terms of the num-
ber of the data points. This is because our scheme only
considers spatial distributions but not the interpolation er-
ror itself, and a region with large harmonicity may become
over-represented with our distance-based scheme. However,
our approach is more easily parallelized. When there are
multiple data points to be added in the distance-based al-
gorithm, actually adding one point to the dataset does not
change the fates of the other remaining points. Therefore, all
the multiple points can be added simultaneously in a paral-
lel fashion. In the energy correction based algorithm, how-
ever, adding one point among the multiple candidates will
inevitably change the fates of the remaining points, and the
parallel addition is not as straightforward. Considering that
the interpolation is computationally extremely fast and that
the wall time for simultaneously computing quantum chemi-
cal information for multiple points can actually cost compa-
rably to single point calculation through parallelization, the
slower convergence in terms of the dataset size will not be a
serious issue.

To employ the construction algorithm with sampling sim-
ulations, we must decide what molecular geometries we will
use initially. The first choice that we can think of will be the
molecular conformation with the lowest energy on the ground
state PES. It is reasonable because the nonadiabatic simula-
tion after excitation will start from the Franck-Condon region,
which is distributed near the most stable geometry on the S0

PES. The S0 optimized geometry in the model Hamiltonian
employed here was with (φp, φi) = (0, 0). (All angles here are
denoted in degree units.) In our sampling simulations starting
from this geometry, we have observed that structures with |φi|
> 30◦ were not added to the dataset due to the presence of
a barrier toward the φi-twist in the model S1 PES. To facil-
itate sampling, therefore, (φp, φi) = (0, ±30) were also se-
lected as additional starting geometries. We also attempted to
adopt high energy hula-twist geometries with (φp, φi) = (90,
90), (90, −90), (−90, 90), and (−90, −90). By changing the
starting conformations in these manners, excess energies of
∼10 kJ/mol and ∼80 kJ/mol were initially supplied during
the sampling simulations.

Progressive convergence of the PES is displayed in
Fig. 3 by adopting these initial geometries in an exclusive
manner. With the basic samplings starting from only (φp, φi)
= (0, 0), the geometries with |φi| > 30◦ were only rarely sam-
pled as described above. As a result, PES in the unaccessed
region is poorly described with interpolation even when the
dataset size is large. When additional initial geometries were
adopted, the contour lines in this region exhibit improved con-
vergence as shown in Fig. 3(b). Similarly, the thermally in-
accessible region, which in fact is not likely to be relevant
for the low kinetic energy dynamics simulations, is described
well with interpolation after accumulating enough points to
the dataset with sampling simulations initiated with larger ex-
cess energies (Fig. 3(c)). In this case, however, the region with
relatively low energies with small φp and φi is not as well

converging. Therefore, we can deduce that employing multi-
ple starting structures in a combinatorial manner for sampling
simulations is actually desirable for the data construction
procedures.

Before proceeding to the actual combined sampling, let
us focus on one more aspect that can be important for nona-
diabatic situations. In nonadiabatic simulations, reproduc-
ing not only the adiabatic energies but also the gaps be-
tween different states will be important. In particular, the
gap energies near conical intersections need to be properly
described. In the sampling technique based on the adia-
batic MD simulations, however, the conical intersection re-
gion might be considered only rarely as the conformation
collection is not affected by the energy gap at all. Indeed,
when we inspected the surface gap even in the high energy
sampling case, reasonably reliable description could be at-
tained only after a large dataset was established with ∼600
data points (Fig. 3(d)). A simplest approach to overcome
this limitation will be to add any visited conformation with
small enough interpolated gap energy. This process will sup-
ply more and more points near the conical intersection to
the dataset, and the surface topology around the intersection
will naturally improve. Thus, we have tested adding molecu-
lar geometries with small interpolated gap energies (smaller
than 25.0 kJ/mol). With this, the region with small gap ener-
gies (�E < 6.0 kJ/mol) became well described even in the
early stage with much fewer data points (Fig. 3(e)). There-
fore, we can infer that including state-crossing geometries,
at least after the interpolated surface becomes stabilized, will
efficiently improve the quality of the diabatic Hamiltonian
interpolation.

B. Combined approach for sampling and
convergence of diabatic Hamiltonian

As discussed above with Fig. 3, the dataset construction
with a single criterion will not be sufficient for fulfilling vari-
ous desired aspects. Therefore, we have combined four condi-
tions listed in Table I in constructing the dataset. The detailed
procedures are also described in the table. These sampling
procedures were rationalized to expedite the surface conver-
gence as follows. The starting geometries with (φp, φi) = (0,
0), and (φp, φi) = (0, ±30) were employed for adding the first
700 geometries. At first, geometries close to the starting ge-
ometries were mainly added into the dataset by using smaller
cutoff distance (r = 0.71 Å). This was to first stabilize the
interpolated potential energy. Then, the PES was improved
with r = 1.00 Å. At this stage, the S1 surface would be sta-
ble and with an intermediate level of reliability. We then in-
tended to add more conformations around the surface crossing
region by considering the S0-S1 gap energies. Finally, we de-
signed a procedure of obtaining good descriptions in the high
energy region of the surface by employing sampling simula-
tions with a large initial kinetic energy. Of course, we have
to admit that setting up these procedures had some level of
arbitrariness. Potentially, a more systematic approach could
be devised without sacrificing the convergence speed. For
the present, we will leave it as an open question for future
considerations.
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FIG. 3. Convergence comparisons with different data point sampling schemes. Convergence patterns of the interpolated S1 adiabatic potential when sampling
simulations were initiated (a) from (φp, φi) = (0, 0), (b) from (φp, φi) = (0, ±30), and (c) from (φp, φi) = (±90, ±90). (d) Convergence pattern of the S0 – S1
gap energy from the dataset collected for (c), without the gap energy criterion. (e) Convergence pattern of the S0 – S1 gap energy when the data collection was
supplemented by the gap energy criterion. Energies are in the kJ/mol unit.

From this point on, the detailed analysis on the diabatic
interpolated Hamiltonian convergence will be conducted us-
ing the dataset constructed with the procedures presented
above in combination with Table I. Figure 4 displays the con-
vergence of the adiabatic S1 surface with respect to the num-
ber of data points collected through the sampling. This figure
indeed shows that the adiabatic potential energies converge
to the reference potential values. For example, a description
in the low energy region (with E < −104 kJ/mol), which will
likely be important for dynamics on this surface, is better than
the description generated with any single collection scheme
shown in Fig. 3 at N = 1000. PES shape near the hula-twist
geometry is also well reproduced after conducting the sam-
pling step with high initial potential energies. As we expected,

combining multiple criteria for sampling was helpful in repro-
ducing the PES in terms of the adiabatic energies.

To conduct the nonadiabatic simulations with interpo-
lated diabatic Hamiltonian, for example, with surface hop-
ping, energy gaps, and nonadiabatic coupling matrix elements
will often be required.49 In particular, these quantities become
important near degeneracy, because the quantum amplitudes
of the electronic states change drastically when the derivative
coupling is large.1–3 As alluded before, naturally, correctly de-
scribing the energy difference by means of interpolation is
more challenging than describing the energy itself in the sin-
gle surface interpolation case, especially near the degeneracy
point. Figure 5 displays the convergence of the S0 – S1 en-
ergy gap with the increase of the dataset size. The interpolated
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TABLE I. Simulation conditions adopted for the interpolation dataset
construction.a

Round Numberb Distancec (Å) Gapd

Primitive 71
1e 229 0.71 No
2f 200 1.0 No
3f 200 1.0 Yes
4g 300 1.0 Yes

aTemperature adopted for generating random initial velocity was 300 K for all rounds.
bNumber of data points obtained from each round of dataset construction.
cDistance cutoff from pre-existing data points for deciding the addition of a new data
point.
dWhen yes, a point was also added when E(S1) − E(S0) < 25 kJ/mol condition was met.
eIn this round, the starting geometries for MD simulations were with (φp, φi) = (0,
0) for the first 129 points, then (φp, φi) = (0, 30) for the next 50 points, and (φp, φi)
= (0, −30) for the last 50 points. Angles here are in degree units. The reason for adopting
different starting geometries toward the last 100 points was to facilitate the sampling in
the span of torsional angle φi . After inspecting the first 129 added points, we observed
no geometries with |φi | > 30◦ were sampled.
fIn this round, the starting geometries for MD simulations were with (φp, φi) = (0, 0)
for the first 100 points, then (φp, φi) = (0, 30) for the next 50 points, and (φp, φi) = (0,
−30) for the last 50 points.
gIn this round, 50 points were obtained from each of the starting angle combinations of
(φp, φi) = (90, 90), (90, −90), (−90, 90), and (−90, −90) for the first 200 points, and
then 25 more points were again added to each combination to make the final dataset size
1000.

gap energies converge well to the energy differences calcu-
lated from the analytic diabatic Hamiltonian. Even the surface
crossing region with the energy gap smaller than 5 kJ/mol is
well-described after sampling the surface crossing points, al-

though there is some level of discrepancy in its nearby region.
This discrepancy does not necessarily mean that much larger
dataset is needed to properly describe the conical intersection.
In this test case, in fact, the intersection is located in thermally
inaccessible region on the S1 analytical surface as shown in
Figs. 4 and 5. Because we have sampled data points up to N
= 700 on the S1 surface with the initial potential energies of
−109.1 and −103.5 kJ/mol, the intersection region was not
visited frequently. After adopting samplings that started from
high potential energy regions, the description in the intersec-
tion region improves noticeably.42

More detailed aspects of the convergence can be seen
from the one-dimensional cut of the energy gap pattern at φp

= 57◦. This line cut possesses the conical intersection at (φp,
φi) = (57, −84). Indeed, Fig. 6(a) well displays the pattern the
interpolated surfaces converge with the increase in the dataset
size. In addition, Fig. 6(b) demonstrates that the singularity
pattern of the derivative coupling vector is reproduced well
with the interpolation scheme. It should be noted that if adi-
abatic Hamiltonians were interpolated, the singularity pattern
of the coupling would not have been properly captured. By
interpolating diabatic Hamiltonians, it is indeed possible to
overcome this issue as described by Evenhuis et al.17, 28, 29

C. Effect of quasi-diabatization on the quality
of interpolation

As mentioned before, the ultimate goal of developing
the present method for interpolating diabatic Hamiltonian is

FIG. 4. Convergence pattern of the interpolated S1 adiabatic potential energy surface, with respect to the number of data points N. The reference analytic
adiabatic energies are plotted as dashed contours. Energies are in the kJ/mol unit.
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FIG. 5. Convergence pattern of the energy gap between the S0 and S1 adiabatic states, with respect to the number of data points N. The adiabatic energy gap
with the reference analytic model is also shown with dashed contours. Energies are in the kJ/mol unit.

to apply it to photodynamics studies with potential surfaces
which are as reliable as quantum chemically calculated ones.
In this sense, our approach has an important limitation as it is
based on externally defined diabatization from a finite num-
ber of electronic states. In practice, in any practical quan-
tum chemical calculations, a perfect diabatization is impos-
sible except for very small molecules.30 Indeed, the interac-
tions between active states and non-active states are conven-
tionally omitted during practical diabatization schemes. This
leads to the well-known non-removable residual derivative
coupling components, which subsequently induce inconsis-
tency between the adiabatic-to-diabatic transform matrix R
and the nonadiabatic coupling matrix F. Namely, the relation-
ship of Eq. (4) becomes only an approximation. Then, a nat-
urally arising question will be how the residual part of the
derivative coupling vector and the F-to-R inconsistency will
affect the quality of the interpolation.

In order to bring an answer to this question, we have
additionally performed a rather simple but semi-quantitative
test on the accuracy of the interpolation by intentionally im-
plementing some F-to-R inconsistency. For this, we have ex-
tended the toy Hamiltonian into 4 × 4 dimension by adding a
fourth diabatic state. Its corresponding nonadiabatic coupling
vectors are then trivially obtained with Eq. (13). This F will
of course be different from the original F in the 3 × 3 space.
Therefore, if we now consider the original 3 × 3 portion of
the extended Hamiltonian and take its adiabatic transforma-
tions as before, we have F and R matrices inconsistently de-
fined with each other. Of course, this inconsistency is gener-

ated by the neglect of the interactions between the new fourth
diabatic state and the original three states. We have designed
the Hamiltonian extension such that the additional matrix ele-
ments for describing the fourth state and its couplings are lin-
early independent from the already existing elements.42 The
residual coupling in the quantum chemical calculation case
will have a close correspondence to the error in the F vector,

δF = |F4×4 − F3×3|
|F3×3| . (18)

The size of the error can be tuned by scaling the off-diagonal
elements of the Hamiltonian between the fourth state and the
other states. Because δF itself varies with the changes in the
molecular geometry, we have taken 3600 mesh point geome-
tries utilized in generating contours in Figs. 3–5 and adopted
the root-mean-squared 〈δF〉 as the representative error. The
interpolations were then performed again using the erroneous
F vectors in the dataset, and the errors in the potential ener-
gies were monitored as a function 〈δF〉. Based on the same
3600 mesh point molecular structures, the root-mean-squared
and the maximum errors in the S1 potential energy were
obtained and are displayed in Fig. 7(a). Not so surprisingly,
both the maximum and the r.m.s. errors have almost linear re-
lationships with 〈δF〉. The most important feature to notice is
the fact that the potential error associated with 〈δF〉 is rather
small when the coupling error level is below 10%. Figure 7(b)
also displays how different the interpolated potential surface
and the surface gap become with a ∼6% level of coupling er-
ror. Indeed, even the most sensitive conical intersection region
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FIG. 6. One-dimensional cut representation of the surface characters at φp
= 57◦, with the interpolated (solid) and analytical reference (dashed) poten-
tial surfaces: (a) S0 – S1 energy gap, (b) norms of derivative coupling vectors,
and (c) adiabatic S1 energy. Lines with N = 900 and 1000 are almost exactly
overlapping with each other.

is not significantly affected. As it has been discussed that the
non-removable couplings can become quite negligible with a
proper choice of the diabatization space,33, 36 this result im-
plies that the interpolation based on external diabatization al-
gorithm from quantum chemical calculation can be a reliable
approach, even with the limitations associated with the F-to-R
inconsistency. Of course, a relatively good correspondence is
not automatically guaranteed, and we admit that care must be
taken in applying any diabatization scheme, especially near
dynamically important regions.

D. Applications to nonadiabatic dynamics

As a final test of the applicability of the current scheme to
molecular simulations, we have performed nonadiabatic tra-
jectory surface hopping calculations using both analytical and
interpolated diabatic potential energies. The starting geome-
tries for these simulations were generated with an ensemble
from 1.0 ns equilibrium NVT (T = 300 K) MD simulation on
the S0 surface.50 The standard fewest switches surface hop-
ping (FSSH) trajectories1–3 with analytical or interpolated di-
abatic potential energies were then propagated for 50 ps. In
total, 500 trajectories were propagated.

The resulting nonadiabatic population transfers are dis-
played in Fig. 8. The S1 population change in time with in-
terpolated PES with N > 500 is similar to the one observed
with the analytical surface model. The reason for the incor-
rect population decay patterns at N = 71 and at N = 300
will likely be the incorrect location of the conical intersec-
tion and the subsequent error in the barrier height toward the
conical intersection region. As described in the above, after
N = 700, the conical intersection is similarly located in com-
parison to the analytical surface (Figs. 5, 6(a), and 6(b)). In
addition, the barrier height toward the intersection becomes
quite reliable after reaching this database size as displayed in
Fig. 6(c). As a consequence, the population transfer dy-
namics is in good agreement with the results from the an-
alytical potential. These results imply that current dataset
construction scheme is working properly for conducting
nonadiabatic MD simulations, at least with initial kinetic

FIG. 7. Effect of coupling errors in the accuracy of interpolated PES. (a) The root-mean-squared (red circles) and the maximum errors (black squares) of the
S1 potential energies as functions of root-mean-squared %-error in the coupling. The inset displays the distribution of absolute coupling errors for the case of
6% average coupling error. (b) Interpolated S1 potential energies and the S1 – S0 gap at the 6% level of coupling errors (solid lines). The interpolated potential
with exact coupling vectors is also shown (dashed lines) for comparison.
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FIG. 8. Decay of S1 populations from nonadiabatic trajectory hopping sim-
ulations with interpolated (solid) and analytical (dashed) potentials.

energies corresponding to T = 300 K. Correct population
transfer dynamics should be reachable when the conical in-
tersection and the surface shape toward it are well-described
with the diabatic Hamiltonian interpolation.

IV. CONCLUSIONS

We have presented a scheme for interpolating diabatic
potential energy matrices. By using the Cartesian weight-
ing coordinates, interpolation could be straightforwardly per-
formed even for a relatively large molecule. To evaluate its
applicability to actual surface crossing dynamics, we have
tested it with a model of the green fluorescent protein chro-
mophore. We observed that the diabatic Hamiltonian interpo-
lation was indeed appropriate for calculating adiabatic ener-
gies in the vicinity of the surface crossing point as well as
in regions where the surfaces are well separated. Nonadia-
batic coupling and its singularity near the conical intersection
were also well described. The surface description was system-
atically improved with the conventional molecular dynamics
simulation based approach,13, 24 adapted for the surface cross-
ing situation. This approach correctly generated improving
behaviors in predictable ways. Simple nonadiabatic dynamics
simulations were also performed for a demonstration purpose,
displaying that the interpolation of diabatic potential energy
matrices is in fact suitable for computer simulations of chem-
ical events of that class.

Nevertheless, the present approach at the current stage
will not be completely adequate for investigating photody-
namics of biological systems. In such studies, the nonbonded
interactions between the chromophore and the protein envi-
ronment need to be accurately described. Because interpola-
tion toward condensed phase simulations has only utilized the
fixed point charge model,13, 24 and because the fixed charge
model cannot describe remixing of diabatic states, it is not
yet known how interpolation will behave in such a regime. In
addition, systems that are reactive in the excited states may
require much larger dataset for interpolation. For example,
excited state proton transfer51, 52 occurs quite frequently with

fluorescent proteins. Even though interpolation technique, in
principle, may describe such reactions, representing large and
flexible systems may become practically difficult.

Despite these limitations, the present approach will
still be useful in studying nonadiabatic dynamics of rel-
atively large molecules when combined with appropriate
quantum chemical calculations, as long as a suitable quasi-
diabatization process is provided. For example, many
monomethine cyanine dyes and, therefore, fluorescent protein
chromophores have similar electronic structures, and diabati-
zation for those systems will likely be well-defined.35, 53 By
design, the present method avoids the time-consuming on-the-
fly quantum chemical calculations, but can yield nonadiabatic
simulations on as much reliable PESs. Most importantly, it
can generate a large number of trajectories at a reasonable
computational cost. Our next step will be to include the di-
abatic state mixing on the nonbonded interactions to over-
come the first limitation stated in the above paragraph. This
will make the combination of the present approach with the
computationally less demanding molecular mechanics (MM)
description reliable. Namely, by adopting the present scheme
for the chromophore part and by employing the MM descrip-
tion for the remainder in a multiscale manner,54–57 we will be
able to tackle large biomolecular systems. In fact, compared
to the widely applied quantum mechanics/molecular mechan-
ics (QM/MM) approaches, the interpolation based scheme
will have one additional merit besides the benefits described
above. Once the interpolation dataset construction procedures
are completed, any systems involving the same molecular
moiety in the QM or interpolation part can be readily stud-
ied without performing any additional quantum chemical cal-
culations. For example, with interpolation, studying protein
mutation effects in the MM region can be performed at much
reduced cost than with the QM/MM approach. With this in
mind, we are currently pursuing simulations with interpola-
tion dynamics based on ab initio data and are making progress
in developing electrostatic model that will be more relevant
for diabatic description of the potential. We hope to report on
these in due course in the future.
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APPENDIX: ANALYTICAL GRADIENT OF THE
WEIGHTING FUNCTION w(n)

To obtain globally well-behaved diabatic Hamiltonian
D(X), not only the Taylor expansions from each data point
but also the weighting function should be differentiable. In
addition, for molecular dynamics simulations, the differenti-
ation should be performed analytically but not numerically.
Here, we prove that the Cartesian weighting function is in-
deed differentiable with analytic formulations, and therefore
globally well-behaved.23 The derivative of w(n) with respect
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to a Cartesian coordinate Xa is
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The two key terms can be written as
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The remaining task is to differentiate d2
n = ∑

i

|(X)i

− (SX(n) + T)i |2 with respect to Xa. For simplicity, we
assume that the centers of masses of the data point X(n) and
the molecular conformation X coincide (namely, T = 0),
which can be trivially enforced during simulations. From the
fact that X(n) is independent of Xa,
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Because S is obtained by minimizing the Euclidean distance
with respect to X, ∂S/∂Xa = 0.23 Therefore, the final deriva-
tive of d2

n with respect to Xa simplifies to

∂d2
n

∂Xa

= 2
∑

i

[(X)i − (SX(n))i]. (A5)

By combining these expressions, the analytic gradient of w(n)
can be readily obtained.
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